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Abstract

Rapid and accurate identification of Vibrio species has been problematic because phenotypic characteristics are
variable within species and biochemical identification requires two or more days to complete. Matrix-assisted
laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has become a powerful tool for
rapidly distinguishing between related bacterial species. However, its accuracy depends on the number of strains
in a database. In the current study, we extend and apply the Vibrio database based on MALDI-TOF MS. A total of
74 strains of Vibrio representing 28 species were identified and included in new database. A phylogenetic tree
based on rpoB sequence and dendrograms were constructed. We analyzed 30 clinical Vibrio of three species to
evaluate the new database and carried out PCA dendrogram analyses for differences of strains. We created a new
database that offered fast  and accurate Vibrio  identification.  MSP and PCA dendrogram analyses provided
technical support to track sources and incidences of Vibrio infection. In addition, the discovery of characteristic
and differential peaks is useful for the future identification of Vibrio. This represents a powerful tool for the rapid
and accurate classification and identification of Vibrio and closely related species.

Key words: database, Vibrio, MALDI-TOF MS, rpoB, dendrograms

Citation: Wu Jing, Zhou Yuexia, Liu Xiaofei, Cao Yuan, Hu Chengjin, Chen Yingjian. 2020. Extension and application of a database for the
rapid identification of Vibrio using MALDI-TOF MS. Acta Oceanologica Sinica, 39(10): 140–146, doi: 10.1007/s13131-020-1635-8

1  Introduction
Vibrio, one of the most common Gram-negative bacteria in

the marine environment, is widely distributed on body surfaces,
in the intestinal tracts of marine organisms and in seawater
(Kaneko and Colwell, 1974). More than 20 Vibrio species infect
fish or humans, causing serious diseases (Tiruvayipati and
Bhassu, 2016; Cheng et al., 2015). For instance, V. vulnificus, V.
parahaemolyticus, V. fluvialis and V. alginolyticus reportedly
cause severe gastroenteritis, severe skin-soft tissue infections,
septicemia, and other serious infections, particularly in immuno-
compromised hosts (Cheng et al., 2015). At present, methods to
identify Vibrio are primarily based on microscopy and biochem-
ical tests, which are time and labor-intensive as well as subject-
ive, making it difficult to rapidly diagnose these pathogenic bac-
teria. Therefore, it is imperative to identify a rapid and reliable
identification method for Vibrio.

Matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS), a promising technique for
the rapid identification of microorganisms that has been de-
veloped in the past 20 years (Singhal et al., 2015), is rapid, accur-
ate and reproducible. According to previous studies (Sogawa et
al., 2012), MS is able to identify species, quantities, and strain
separation in a given database. However, its accuracy depends
on the number of strains in a database. The current BiotyperTM

database (Version 3.3.1.0) (claimed by Brucker manufacturer)
contains only 78 Vibrio belonging to 52 species, even some spe-

cies contain only one strain, making it difficult to accurately
identify Vibrio. Augmentation of the original MALDI BiotyperTM

database (Version 3.3.1.0) via the incorporation of mass spectra
obtained in-house from environmental and clinical isolates may
increase the identification rate at the species level.

In the present study, we augmented the BiotyperTM database
and evaluated the ability of a supplementary database to facilit-
ate the taxonomic identification of Vibrio. We constructed phylo-
genetic trees based on MALDI-TOF MS and rpoB sequences and
compared the resolution power of these two methods. The com-
parison of peptide protein fingerprints revealed characteristic
peaks at both the genus and species levels. Additionally, for
closely related species, we analyzed differences in protein peaks
between environmental strains and clinical isolates.

2  Materials and methods

2.1  Strains and cultivation
Strains were obtained from the Marine Culture Collection of

China (MCCC) (Shao, 2010) and were isolated from seawater,
plankton and marine animals and plants. The strains were
mainly collected from some countries in the Pacific Rim, such as
the USA, Japan, Australia and some areas of China (detailed in-
formation of strains see Supplementary Information). All strains
were grown on 2216E medium (made in the BD company in the
USA) or TCBS (Thiosulfate citrate bile salts sucrose agar) medi-  
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um (configured by our own laboratory) overnight at 28°C.

2.2  RpoB sequence analysis for species identification
The strains were first verified by sequencing. We designed

primers based on a conserved sequence of the Vibrio rpoB gene.
The primers sequence and amplification conditions are not dis-
closed due to a patent application. PCR products were se-
quenced at the Invitrogen Trading (Shanghai) Co. Sequences
were compared using the BLAST program from the National
Center for Biotechnology Information (NCBI) (http://www.ncbi.
nlm.nih.gov/BLAST).

2.3  MALDI-TOF MS
Strains were grown on appropriate culture medium at 28°C

overnight. A series of standard operating methods for MALDI-
TOF MS analysis were performed as previously described (Hazen
et al., 2009). In brief, we first prepared samples via the formic
acid method. Then, using FlexControl 3.4, we automatically ac-
quired mass spectra in linear positive mode. Next, we excluded
low-quality spectra using FlexAnalysis 3.4 software. Finally, the
spectra for each strain were summarized and processed using
BiotyperTM software 3.1 to generate main spectra (MSP), each
containing the 30–70 most prominent peaks derived from single
spectra. We edited the name, location and the node for each
MSP.

2.4  Vibrio database evaluation
Vibrio parahaemolyticus (10 strains), V. alginolyticus (10

strains), and V. harveyi (10 strains) from Weihai Municipal Hos-
pital were used to evaluate the newly created marine microor-
ganism database and the Bruker Biotyper database. The results of
this assessment were expressed as one of the following log scores
(Calderaro et al., 2014): highly probable species identification
(>2.3), probable species identification (2.0–2.3), reliable genus
identification (1.7–2.0) and unreliable identification (<1.7). In ad-
dition, in order to better evaluate the accuracy of mass spectro-
metry database identification, we also performed biochemical
identification and rpoB sequencing.

2.5  Data analysis
The sequences of rpoB fragments (800 bp) were used to con-

struct simultaneously a neighbor-joining (NJ) phylogenetic tree
and a maximum likelihood (ML) phylogenetic tree with MEGA6.0
software. MSP dendrograms were constructed based on our own
expanded database, and principal component analysis (PCA)
dendrograms was performed using MALDI Biotyper 3.1 data-
base. Mass data files were processed with baseline correction,
Gaussian smoothing and peak finding using FlexAnalysis 3.4. The
processed spectra results were overlaid, outliers were deleted
from the data set, and we selected characteristic peaks from each
overlapping set of spectra for analysis.

3  Results

3.1  Vibrio database augmentation and development
PCR amplification products of 83 strains were sequenced in

our study. Among them, rpoB sequence results from 74 strains
were available and included in the new database. As shown in
Table 1, the numbers of certain strains, such as V. alginolyticus,
V. chagasii, V. damsela, V. parahaemolyticus and V. harveyi, in
the newly created database were more numerous than in the Bio-
typer database, which demonstrated the obvious advantages of
the new database and its extension of the MALDI Biotyper

database.

3.2  RpoB phylogenetic tree analysis
The rpoB phylogenetic tree is shown in Fig. 1. Among 74 Vi-

brio, 60% were classified as V. parahaemolyticus, V. harveyi and
V. alginolyticus. For V. furnissii, V. diazotrophicus, V. mimicus
and so on, they are not meaningful to analyze considering their
quantity and clinical significance. Therefore, these strains were
not included in the evolutionary tree. Figures 1a and b reveal
clear species assignments for V. anguillarum, V. damsel and V.
chagasii, while such assignments were not made for other isol-
ates. For example, the 12 strains of V. parahaemolyticus included
here were not separated from the other strains but were divided
into two groups, as were 6 strains of V. alginolyticus and 23
strains of V. harveyi. Additionally, three species originated at a
branch and crossed connection. As shown in Figs 1a and b, the
phylogenetic trees constructed by the two methods are very sim-
ilar. Therefore, it is very reliable for the rpoB phylogenetic tree we
constructed.

3.3  MALDI-TOF MS cluster analysis
Consistent with the rpoB phylogenetic tree, we selected the

same strains for clustering based on MALDI-TOF MS. We con-
structed the main spectrum projection (MSP) dendrograms
based on the expanded Database. To show the difference, we also
constructed the principal component analysis (PCA) dendro-
grams based on MALDI Biotyper 3.1 Database. As shown in Fig. 2a,
the tree divided into two branches at a distance level of 800, with
one branch containing V. damsel, V. chagasii, and V. anguillar-
um and another branch containing V. alginolyticu, V. harveyi,
and V. parahaemolyticus. At a distance level of 700, V. damsel
and V. chagasii formed two separate branches. Independent
branches were formed for V. alginolyticu, V. harveyi and V. para-
haemolyticus at a distance of 100. Thus, the phylogenetic rela-
tionships among V. alginolyticu, V. harveyi, and V. parahaemo-
lyticus are closer than those among V. damsel, V. chagasii, and V.
anguillarum, which is consistent with previous reports (9, 10).
Three strains of V. chagasii originated from Greece and belonged
to a single branch. For V. damsela, one group originated from
healthy Chinese shrimp, Japan larva viscera, and Australian Ba-
con curing brine. Another group containing 1 strain originated
from damsel fish obtained in the USA. Six strains of V. alginolytic-
us were divided into 2 groups, of which 4 strains were isolated
from healthy shrimp intestines on shrimp farms in Jimo and
Changyi, China, and the remaining 2 grouped strains were isol-
ated from spoiled horse mackerel causing food poisoning in Ja-
pan. Strains with close geographical locations were included in
one group. We will confirm the geographical distribution by in-
creasing the number of strains in future studies.

As shown in Fig. 2b, the tree is also divided into two branches,
one containing V. alginolyticu, V. harveyi and V. parahaemolytic-
us, the other containing V. damsel, V. chagasii, and V. anguillar-
um. However, obviously, except for V. parahaemolyticus, other
bacteria are cross-distributed and not well separated.

3.4  Characteristic peaks at the genus and species levels
Bacterial species are identifiable based on their unique pro-

tein profile determined with MALDI-TOF MS (Kaleta et al., 2011;
Fagerquist et al., 2010; Seng et al., 2009). After obtaining MS data
for the isolates in our database followed by analysis using Flex-
Analysis 3.4 software, we observed high similarities at the pro-
tein level (Fig. 3). We then speculated that some protein peaks
are representative at both the genus and species levels. In our
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study, there were a total of 70 peaks representing between 2 000
and 20 000 Da collected for every strain. As shown in Fig. 3, ac-
cording to FlexAnalysis software, three species showed that they
contain major peaks with similar m/z values and relative intens-
ities. The composition of the species affects the number of peaks.
Further statistical analysis indicated the presence of the 4 276 m/z
peak in all species of Vibrio in our study. The 5 183, 6 170, and
6 409 m/z peaks were mainly present in V. alginolyticus, V. har-
veyi, and V. parahaemolyticus and were not often present in V.
damsel, V. chagasii, and V. anguillarum. Similar spectral peaks
were generated for V. alginolyticus, V. harveyi, and V. parahae-
molyticus, thus confirming the high homology of the three spe-
cies. We next speculated that these peaks may also reflect Vibrio
characteristics to a certain extent at the genus level, while some
peaks may even reflect different Vibrio at the species level. The
protein mass fingerprints of 33 V. harveyi strains, 22 V. parahae-
molyticus strains and 16 V. alginolyticus were compared, and
their MSPs were analyzed for each species.

3.5  Vibrio database evaluation
These 30 strains were first confirmed by rpoB sequencing.

Next only 10 (33.33%) strains have been correctly identified us-
ing VITEK 2 Compact. However, the results (Table 2) indicate
MALDI-TOF MS correctly identified 28 (93.33%) of 30 strains in
the extended database at the species level, a rate that was signi-

ficantly higher than that of the MALDI Biotyper 3.1 database
alone (76.67%) (P<0.05). Moreover, a strain identification score
>2 accounted for 80% of isolates, and therefore the MALDI Bio-
typer 3.1 database enriched with our own database better identi-
fied Vibrio at the species level.

3.6  Peptide mass fingerprinting analysis of clinical strains versus
environmental strains for V. harveyi, V. parahaemolyticus and
V. alginolyticus.
We assumed strains from different sources may have distinct-

ive spectra even if they belong to the same species. We contin-
ued to investigate differences in the spectra of environmental
strains in the newly created database versus the spectra of clinic-
al strains isolated at Weihai Municipal Hospital.

For V. parahaemolyticus, we first carried out cluster analysis
using MALDI Biotyper 3.1 and selected different protein peaks
for environmental and clinical strains of V. parahaemolyticus.
These V. parahaemolyticus strains (Fig. 4a) were divided into two
clusters consisting of 8 clinical strains (Cluster 1) and 11 newly
created database strains plus 2 clinical strains (Cluster 2). The
PCA dendrogram was generally able to distinguish between clin-
ical strains and environmental strains. By analyzing protein fin-
gerprints, we identified the presence of 4 338.75 m/z peaks in all
clinical strains of V. parahaemolyticus but in only 33.3% (3 of 9) of

Table 1.   Numbers of strains filed in the MALDI Biotyper database and the newly created marine Vibrio database

Species
Newly created

database
MALDI Biotyper

database
Species

Newly created
database

MALDI Biotyper
database

Vibrio anguillaeum 1 7 Vibrio mimicus 1 1

Vibrio aerogenes 0 1 Vibrio mytili 0 1

Vibrio aestuarianus 1 1 Vibrio marisflavi 1 0

Vibrio agarivorans 0 1 Vibrio natriegens 1 1

Vibrio albensis 0 1 Vibrio navarrensis 0 1

Vibrio alginolyticus 8 4 Vibrio neptunius 0 1

Vibrio brasiliensis 0 1 Vibrio nereis 1 1

Vibrio campbellii 2 1 Vibrio nigripulchritudo 0 1

Vibrio chagasii 5 1 Vibrio ordalii 0 1

Vibrio carchariae 1 0 Vibrio orientalis 1 1

Vibrio
cincinnatiensis

0 1 Vibrio pacinii 0 1

Vibrio coralliilyticus 0 1 Vibrio
parahaemolyticus

12   8

Vibrio cyclitrophicus 0 1 Vibrio pectenicida 0 2

Vibrio
diazotrophicus

1 2 Vibrio penaeicida 0 1

Vibrio damsela 6 5 Vibrio pomeroyi 0 1

Vibrio ezurae 0 1 Vibrio ponticus 0 1

Vibrio fischeri 1 3 Vibrio pelagia 1 0

Vibrio fluvialis 1 3 Vibrio proteolyticus 1 1

Vibrio fortis 1 1 Vibrio rotiferianus 1 1

Vibrio furnissii 1 2 Vibrio ruber 0 1

Vibrio gazogenes 1 1 Vibrio rumoiensis 0 1

Vibrio gigantis 0 1 Vibrio scophthalmi 0 2

Vibrio harveyi 25   4 Vibrio shilonii 0 1

Vibrio hispanicus 0 1 Vibrio splendidus 0 1

Vibrio ichthyoenteri 1 2 Vibrio superstes 0 1

Vibrio kanaloae 0 1 Vibrio tasmaniensis 0 1

Vibrio lentus 0 1 Vibrio tubiashii 1 0

Vibrio mediterranei 1 1 Vibrio vulnificus 1 5

Vibrio metschnikovii 0 2 Vibrio xuii 1 1

          Note: Strains found in the newly created database are in bold.
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Fig. 1.     The neighbor-joining (NJ) phylogenetic tree for Vibrio  based on rpoB  sequences (a) and the maximum likelihood (ML)
phylogenetic tree for Vibrio  based on rpoB  sequences (b).  a.  The robustness of the branching is indicated by bootstrap values
calculated for 1 000 subsets. Bar: 0.05% sequence divergence. b. The robustness of the branching is indicated by bootstrap values
calculated for 1 000 subsets.  Bar:  0.2% sequence divergence. The tree was constructed using MEGA6.0 based on 55 sequences
(approximately 870 bp in length), including 16 type strain sequences. The 55 sequences comprise V. alginolyticus (6), V. harveyi (23),
V. parahaemolyticus (12), V. damsel (6), V. chagasii (5), and V. anguillarum (3).
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V. parahaemolyticus environmental strains. Vibrio harveyi
strains (Fig. 4c) were divided into two clusters of 5 clinical strains
(Cluster 1) and 22 newly created database strains plus 3 clinical
strains (Cluster 2). We identified 5 149 m/z peaks in 42.85% of V.

harveyi clinical strains and in 92.59% (25 of 27) of environmental
strains.

4  Discussion
Some studies (Tarr et al., 2007; Ki et al., 2009) have proved the

utility of the rpoB gene for the identification and classification of
Vibrio due to its high specificity. Our study also confirms that 16S
rRNA sequencing can only correctly identify 33% of strains.
Therefore, rpoB sequencing followed by mass spectrometric de-
tection was performed as the gold standard for Vibrio identifica-
tion in this study. Using the obtained peptide mass fingerprints,
we created and evaluated a new database that enhanced the
MALDI Biotyper database and offered fast and accurate Vibrio
identification. MSP and PCA dendrogram analyses provided
technical support to track sources and incidences of Vibrio infec-
tion. In addition, the discovery of characteristic and differential
peaks is useful for the future identification of Vibrio using
MALDI-TOF MS.

The identification accuracy rate for MALDI-TOF appears to
be closely related to the species and number of strains in a data-
base (Cheng et al., 2015; Huang et al., 2016; Calderaro et al.,
2013). The identification of unknown bacteria involves searching
a library that contains a sufficient number of known strains to en-

Table 2.     Best-match identification results for 30 blind-coded
clinical isolates using the MALDI Biotyper 3.1 database alone
versus enrichment with our own expanded database

Level of
identification

Number of identified/total

MALDI
Biotyper 3.1 database

Expanded
database

Species level 23/30 (76.67%) 28/30 (93.33%)

Genus level 2/30 (6.67%) 1/30 (3.33%)

Misidentified   5/30 (16.67%) 1/30 (3.33%)
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Fig. 2.   The main spectrum projection (MSP) dendrograms based on the expanded database (a) and the principal component analysis
(PCA) dendrograms based on MALDI Biotyper 3.1 database (b). We analyzed 55 strains, including V. alginolyticus (6), V. harveyi (23),
V. parahaemolyticus  (12),  V. damsela  (6),  V. chagasii  (5),  and V. anguillarum  (3).  Detailed information of  strains is  shown in
Supplementary Information.
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Fig. 3.   Spectra of three Vibrio species generated by the Bruker
Biotyper MALDI-TOF MS system. a. Vibrio parahaemolyticus, b.
V. harveyi, and c. V. alginolyticus. The absolute intensities and
masses (m/z) of the ions are shown (axes). For easy viewing, this
figure reflects only the mass spectra ranging from 2 000 to 10 000 m/z,
which comprises the majority of peaks.
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sure reliability. The strains in our newly created database com-
plement the Biotyper database. However, we will continue to ex-
pand the number and species of Vibrio in future research.

Phylogenetic analyses based on the rpoB gene sequence per-
mit the reliable organization of different species (Tarr et al., 2007;
Ki et al., 2009). Interestingly, in our study, the same species were
divided into several coexisting groups, although this phenomen-
on was observed only with the closely related species V. al-
ginolyticus, V. harveyi and V. parahaemolyticus. For these spe-

cies, the average nucleotide distances calculated for the rpoB
gene were 4.2% (V. alginolyticu and V. harveyi), 3.2% (V. al-
ginolyticus and V. parahaemolyticus) and 5.3% (V. harveyi and V.
parahaemolyticus) (Tarr et al., 2007). Strains reported in the liter-
ature are generally derived from the same sea or patients in the
same area. However, the strains in our study came from many
sources, including the USA, Japan, Australia, China, Asia, North
America, and Oceania, resulting in a more dispersed species dis-
tribution. Thus, for closely related species, a different originating
location and temporal and spatial separation result in relatively
large differences in rpoB sequences, nearly surpassing interspe-
cific differences.

In general, phylogenetic trees based on gene sequences
showed a significantly better fit than trees produced by cluster-
ing MALDI-TOF mass spectra. However, for closely related spe-
cies, relationships were not clearly defined by rpoB sequence
analysis in our study. Closely related species had clearly similar,
but not identical, MALDI-TOF mass spectra. The peptide mass
spectra of various pathogens indicate geographical specificity
(Price et al., 2007). Different marine habitats and geographical
regions affect the distribution of different species and subspecies.
The toxicity and pathogenicity of diverse pathogens vary with
geographical location. Thus, MALDI-TOF MS may be an ideal
tool not only to classify certain strains but also to track the source
and spread of various pathogens. We will continue to study dif-
ferences in the spectra of pathogenic strains.

More closely related strains generally exhibit more similar
spectra. As reported by Hazen TH et al. (2009), the peak at 6 409 m/z
that was detected in the spectra of 75% of Vibrio may be a useful
biomarker for the identification of Gammaproteobacteria. In our
study, the peaks at 4 276, 5 183 and 6 170 m/z may also be useful
biomarkers for Gammaproteobacteria, while the peaks at 7 198,
8 053, 9 081, and 9 466 m/z may be biomarkers for Vibrio para-
haemolyticus. Other detected peaks may have similar signific-
ance. These selected peaks potentially represent a ribosomal pro-
tein or housekeeping proteins with taxonomic meaning, and fur-
ther studies to investigate their significance are required. In sum-
mary, MALDI-TOF MS provides valuable information that assists
in discriminating between closely related species. Shifts in pro-
tein peaks between closely related species, such as the 9 466 m/z
peak in the protein mass fingerprints of V. harveyi and V. para-
haemolyticus or the 9 458 m/z peak in the protein mass finger-
prints of V. alginolyticus, may be attributable to amino acid sub-
stitutions (Emami et al., 2012).

The differential peaks between clinical and environmental
strains, may be related to strain virulence, may reflect strain ad-
aptation to a particular geographic location. Thus, further analys-
is and the development of biomarker peaks are required to bet-
ter distinguish three different species comprising clinical and en-
vironmental strains. We confirmed differences between clinical
strains and environmental strains, suggesting MALDI-TOF MS
may be a valuable tool to discriminate between clinical and en-
vironmental strains. However, further analysis of a larger num-
ber of isolates is required to validate differential protein peaks.
The mass spectra of different strains may be influenced by sever-
al factors, such as culture temperature (Xuan et al., 2015), cul-
ture medium and incubation time. Therefore, we maintained the
same culture conditions for clinical strains and environmental
strains in our study.

In conclusion, the enriched database can better identify Vi-
brio at the species level. Once the patent auditing is successful,
we will make the database public. The cluster analysis based on
MALDI-TOF MS makes epidemiological investigation conveni-
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Fig.  4.     PCA  dendrogram  generated  with  Bruker  Biotyper
MALDI-TOF MS system mass spectra for clinical strains and en-
vironmental strains of V. parahaemolyticus (a), V. alginolyticus
(b), and V. harveyi (c). The distance level and the order number
of spectra are shown (axes). The order number of spectra is the
default number of the spectrum when performing PCA dendro-
gram. Green areas represent clinical strains, and orange areas
represent environmental strains.
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ence. The characteristic peaks at the genus level and the species
level provide basis for the identification of new strains. In the
next years, we will continue to expand the database. For the dif-
ferential peaks between clinical strains and environmental
strains, we will acquire mass spectra in reflector mode to find the
corresponding protein in the protein library. The proteins may
work in manufacturing vaccine and the antibody therapy of vi-
brio infection.
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