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Abstract

Ciliates are important components in planktonic food webs, but our understanding of their community structures
in different oceanic water masses is limited. We report pelagic ciliate community characteristics in three seas: the
tropical West Pacific, the Bering Sea and the Arctic Ocean. Planktonic ciliate abundance had “bimodal-peak”,
“surface-peak” and “DCM (deep chlorophyll a maximum layer)-peak” vertical distribution patterns in the tropical
West Pacific, the Bering Sea and the Arctic Ocean, respectively. The abundance proportion of tintinnid to total
ciliate in the Bering Sea (42.6%) was higher than both the tropical West Pacific (7.8%) and the Arctic Ocean (2.0%).
The abundance proportion of small aloricate ciliates (10–20 μm size-fraction) in the tropical West Pacific was
highest in these three seas. The Arctic Ocean had higher abundance proportion of tintinnids in larger LOD (lorica
oral diameter) size-class. Proportion of redundant species increased from the Arctic Ocean to the tropical West
Pacific. Our result provided useful data to further understand ecology roles of planktonic ciliates in different
marine habitats.
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1  Introduction
Oceanic environments varied from the equator to high latit-

udes. In addition to the obvious decrease in surface water tem-
perature with a progression northward to the pole, the stratifica-
tion type varied from alpha oceans (subtropical seas stratified by
temperature) to beta oceans (high-latitude seas stratified by sa-
linity) (Carmack, 2007). The deep chlorophyll a maximum layer
(DCM) became shallow in the area between the alpha and beta
oceans. It ultimately changed into surface chlorophyll a maxim-
um layer as in the Bering Sea (Wolf and Woods, 1988; Sohrin et
al., 2010; Arrigo and van Dijken, 2011; Jiang et al., 2015; Burridge

et al., 2017).
Biogeographically, plankton distribution can be determined

by large gyres (Longhurst, 2007), of which three exist from the
northern Pacific Ocean to the Arctic Ocean: the North Pacific
Gyre, the Subarctic Gyre, and the Beaufort Gyre (Springer et al.,
1996; Longhurst, 2007; Steele et al., 2004, 2011; Hu et al., 2015; Li
et al., 2016). In addition to the difference in species composition
and abundance in these different habitats, the structure and
function of planktonic ecosystems were different (Megrey et al.,
2009; Legendre and Niquil, 2013).

Planktonic ciliates belong to the phylum Ciliophora, class  

Foundation item: The National Natural Science Foundation of China under contract No. 41706192; the Science & Technology Basic
Resources Investigation Program of China under contract No. 2017FY100803; the National Natural Science Foundation of China-
Shandong Joint Fund for Marine Science Research Centers under contract No. U1606404; the CNRS-NSFC Joint Research Projects
Program under contract No. NSFC 41711530149; the 2017–2019 Sino-French Cai Yuanpei Programme; the National Natural Science
Foundation of China under contract No. 41706217.
*Corresponding author, E-mail: wuchangzhang@qdio.ac.cn; yuanzhao@qdio.ac.cn
†These authors contributed equally to this work.
 

Acta Oceanol. Sin., 2020, Vol. 39, No. 4, P. 9–17

https://doi.org/10.1007/s13131-020-1541-0

http://www.hyxb.org.cn

E-mail: hyxbe@263.net



Spirotrichea, and subclasses Oligotrichia and Choreotrichia
(Lynn, 2008). They comprise tintinnids with lorica, and aloricate
ciliates without lorica. These ciliates are primary consumers of
pico-(0.2–2 μm) and nano-(2–20 μm) sized producers, and are
important food source for metazoan and fish larvae (Gómez,
2007). Accordingly, ciliates play an important role in material cir-
culation and energy flow, from microbial food webs to the tradi-
tional food chain (Azam et al., 1983; Pierce and Turner, 1992; Cal-
bet and Saiz, 2005).

It has been established that different tintinnid taxa dominate
each of these gyres (Taniguchi, 1984; Dolan et al., 2014; Li et al.,
2016; Wang et al., 2019). There was no study on other com-
munity characteristics of ciliates in addition to the taxonomic dif-
ference. In this study, we examined community characteristics of
ciliates in the tropical West Pacific, the Bering Sea and the Arctic
Ocean. The three study areas belong to the three gyres (the North
Pacific Gyre, the Subarctic Gyre and the Beaufort Gyre), respect-
ively. We hypothesize that ciliates characteristics differ due to the
influence of each gyre. We examine following characteristics of
ciliate community: (1) distribution patterns in their vertical direc-
tion, (2) abundance proportions of tintinnids to total ciliates, (3)

the abundance proportion of aloricate ciliate size-fractions, and
(4) tintinnid abundance proportion of different lorica oral dia-
meter (LOD) size-classes and proportions of tintinnid redundant
species in total tintinnids. Our results will assist in understand-
ing differences in vertical distributions of ciliate communities in
these three seas, exploit considerable mechanism that how pela-
gic ciliates structured in water column, and enable prediction of
variation in tintinnid community species richness and LOD size-
class composition in world oceans.

2  Materials and methods
Planktonic ciliates were sampled during two cruises: one to

the tropical West Pacific (12 stations, deeper than 3 000 m) from
28 November to 31 December, 2015 aboard R/V Kexue (Fig. 1),
and the other to the Bering Sea (5 stations, deeper than 500 m)
and the Arctic Ocean (13 stations, deeper than 2 000 m) from 18
July to 10 September, 2016, during the 7th Chinese National Arc-
tic Research Expedition aboard R/V Xuelong (Fig. 1).

At each station, temperature and salinity profiles were ob-
tained from the surface to 200 m using a conductivity-temperat-
ure-pressure (CTD) sensor (Sea-Bird Electronics, Bellevue, WA,
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Fig. 1.   Survey stations: tropical West Pacific, Bering Sea and Arctic Ocean. White line: 80% sea ice concentrations, 15th August, 2016,
according to Sea Ice Remote Sensing at the University of Bremen (https://seaice.uni-bremen.de/sea-ice-concentration/). Arrows
depict currents according to Springer et al. (1996), Steele et al. (2004), Longhurst (2007), and Hu et al. (2015). BSC: Bering Sea Current;
BG: Beaufort Gyre.
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USA). Water samples were collected at seven depths (sampling
points) using 12-L Niskin bottles attached to a rosette wheel.
Most sampling occurred at the surface (5 m), 30 m, 50 m, 75 m,
100 m, 150 m and 200 m in each station, but sampling within the
DCM necessitated some variation in sampling depth.

Chlorophyll a (Chl a) concentration was determined by filter-
ing 250 mL of seawater through a Whatman GF/F glass fiber fil-
ter. Plankton retained on the filter was extracted in 90% (v/v)
acetone, and its fluorescence measured according to the JGOFS
protocol (Knap et al., 1996) using a Turner Trilogy fluorometer
Model 10.

Water samples (1 L) collected from each depth for ciliate enu-
meration were fixed with 1% acid Lugol’s iodine and stored be-
low 4°C in darkness. In the laboratory, samples were concen-
trated to about 100 mL by gently siphoning off supernatant after
settling for at least 48 h. This settling and siphoning processes
was repeated until a final concentrated volume of 50 mL was
achieved, which was then settled in two Utermöhl counting
chambers (25 mL per chamber) (Utermöhl, 1958) for at least 24 h.

The samples in the two chambers was examined using an
Olympus IX 71 inverted microscope (100× or 400×). Less-abund-
ant species were counted in two chambers, while high abund-
ance species were counted in one chamber. Because mechanical
and chemical disturbance associated with collection and fixation
may have provoked detachment of the protoplasma from the lor-
ica (Paranjape and Gold, 1982; Alder, 1999), empty tintinnid lor-
icae were counted as living cells. We acknowledge the possibility
that some lorica might have been empty at collection (Kato and
Taniguchi, 1993; Dolan and Yang, 2017), and that our abund-
ances might be overestimates.

For each species, size (length, width, according to shape) of
the cell (aloricate ciliate) or lorica (tintinnid, especially length
and oral diameter) were measured for at least 20 individuals if
possible. Aloricate ciliates were categorized into size-fractions in
increments of 10 μm for maximum body length for each indi-
vidual. According to lorica morphology and size, tintinnids were
identified to species following Kofoid and Campbell (1929, 1939),
Lynn (2008) and Zhang et al. (2012). Ciliate volumes were estim-
ated using appropriate geometric shapes (cone, ball, and cylin-
der). Tintinnid carbon biomass was estimated using the equa-
tion: carbon = lorica volume (μm3) × 0.053 + 444.5 (Verity and
Lagdon, 1984). We used a conversion factor of carbon biomass
for aloricate ciliates of 0.19 pg/μm3 (Putt and Stoecker, 1989).

There was no existing standardized reference to aloricate cili-
ate size-fraction. Though Marquis et al. (2011) suggested using
equivalent spherical diameter (ESD) to calculate microzooplank-
ton communities, but this method does not reveal the exact
length of each aloricate ciliate. We categorized aloricate ciliate
size-fractions based on measurement of their longest cell length,
following Lessard and Murrell (1996), Taylor et al. (2011) and Li-
ang et al. (2018).

Tintinnid lorica length at different life stages might differ
greatly (Gold and Morales, 1976), while the lorica oral diameter
(LOD) variation was low for the same tintinnid species (Dolan,
2010). Therefore, LOD was used as a proxy for tintinnid size in
this study. The tintinnids were divided into different LOD size-
classes which were 4 μm apart (12–16 μm, 16–20 μm and so on).
Redundant tintinnid species were defined as these species in the
same LOD size-classes. If one LOD size-class has species num-
ber (n) larger than one, redundant species number of this LOD
size-class was n–1. For a tintinnid assemblage, redundant spe-
cies number is the sum of that in every LOD size-class. Methem-
atically, redundant species number of a tintinnid assemblage

could be calculated as the number of species minus the number
of LOD size-classes (Dolan et al., 2016). The proportion of re-
dundant tintinnid species was calculated as the percentage of re-
dundant species number in total species number.

3  Results

3.1  Hydrographic features
Surface temperature and salinity decreased from the tropical

West Pacific (27.2–28.6°C, 33.8–34.7) to the Bering Sea (10.1–10.5°C,
32.7–33.0), then to the Arctic Ocean (−1.2–0.7°C, 26.5–28.3). Sur-
face average Chl a was highest in the Bering Sea ((0.8±0.5) μg/L),
and values in the tropical West Pacific and the Arctic Ocean were
(0.1±0.0) μg/L and (0.0±0.0) μg/L, respectively (Fig. 2).

Vertical temperature, salinity and Chl a concentration pro-
files differed in the three seas. The thermocline in the tropical
West Pacific occurred at about 100 m, much deeper than in the
Bering Sea (about 30 m) and the Arctic Ocean (about 5 m). In the
Arctic Ocean, a second temperature peak occurred between 50
and 75 m (Fig. 2).

Salinity was stratified with depth, with lower salinity in sur-
face waters of each sea. The magnitude of differences in temper-
ature and salinity between surface waters and those at 200 m
differed in the three seas: temperature ranges in the tropical West
Pacific (13.9–28.6°C, difference 14.7°C) and the Bering Sea
(1.5–11.3°C, difference 9.8°C) were larger than in the Arctic
Ocean (−1.6–1.2°C, difference 2.8°C); salinity ranges in the tropic-
al West Pacific (34.3–35.1, difference 0.8) and the Bering Sea
(32.8–33.4, difference 0.6) were smaller than in the Arctic Ocean
(27.4–33.4, difference 6.0) (Fig. 2).

Chl a concentration differed significantly among the three
seas. DCM occurred in both the tropical West Pacific ((101±17) m)
and the Arctic Ocean ((66±7) m), but not the Bering Sea, where
high Chl a concentration occurred in the surface (Fig. 2).

3.2  Ciliate abundance, biomass and vertical distribution
Basically ciliate abundance and biomass (calculated by car-

bon) in the Bering Sea (152–3 267 ind./L, 0.3–11.6 μg/L) was lar-
ger than in the tropical West Pacific (35–443 ind./L, 0–0.7 μg/L)
and the Arctic Ocean (12–1 615 ind./L, 0–4.5 μg/L) (Fig. 3). In the
surface layer, average abundances in the Bering Sea ((1 830±
1 046) ind./L) were 5.7 times and 12.0 times higher than those in
the tropical West Pacific ((320±88) ind./L) and Arctic Ocean
((153±94) ind./L), respectively (Fig. 4).

Vertical distribution trend of average abundances of ciliates
for each depth in the tropical West Pacific, the Bering Sea and the
Arctic Ocean differed (Fig. 4). Average abundance had a “bimod-
al-peak” (high abundance in both surface and DCM layers), “sur-
face-peak” (high abundance in surface layers), and “DCM-peak”
(high abundance in DCM layers), in the tropical West Pacific, the
Bering Sea, and the Arctic Ocean, respectively (Fig. 4).

3.3  Abundance proportion of tintinnid to total ciliate
Generally, tintinnids were not the dominant (abundance pro-

portion >50%) group of planktonic ciliates. However, tintinnids
were the dominant group at layers of 50 m and 100 m (abund-
ance proportion 51.7% and 57.0%, respectively) in the Bering Sea.
In terms of average abundance proportion in different layers, tin-
tinnids represented 0.0%–18.3% (average 7.8%±3.1%), 3.9%–
75.1% (average 42.6%±20.9%), and 0.0%–9.7% (average 2.0%±
2.2%) of all ciliates in the tropical West Pacific, the Bering Sea and
the Arctic Ocean, respectively (Fig. 5).
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Fig. 2.   Vertical distributions of temperature (T), salinity (S) and Chl a concentration from the surface to 200 m in the tropical West
Pacific, the Bering Sea and the Arctic Ocean. Black circles: sampling points. Vertical distribution of temperature and salinity in the
tropical West Pacific from Wang et al. (2019).
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Fig. 3.   Vertical distribution of ciliate abundance and biomass from the surface to 200 m in the tropical West Pacific, the Bering Sea
and the Arctic Ocean. Black circles: sampling points. Vertical distributions of ciliate abundance and biomass in the tropical West
Pacific from Wang et al. (2019).
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3.4  Aloricate ciliate size-fraction difference
Abundance proportions of different size-fractions of aloricate

ciliates revealed individuals of 10–30 μm size-fractions were
more abundant at each depth in the tropical West Pacific than in
the Bering Sea and Arctic Ocean (Fig. 6). The 10–30 μm size-frac-
tion in surface waters represented 76.5%±6.8% of aloricate cili-
ates in the tropical West Pacific, about 20% higher than in both
the Bering Sea (54.6%±7.5%) and the Arctic Ocean (56.7%±7.8%).
Aloricate ciliates >30 μm size-fraction in surface waters represen-
ted less than 30% of all aloricate ciliates in the tropical West Pa-
cific, but more than 40% in both the Bering Sea and the Arctic
Ocean (Fig. 6). From surface waters to 200 m depth, aloricate cili-
ates abundance proportion of 10–20 μm size-fraction were most
abundant in the tropical West Pacific, representing more than
40% of all aloricate ciliates. In the Bering Sea and the Arctic

Ocean, aloricate ciliates >30 μm size-fraction were the dominant
size-fraction component from surface waters to 150 m depth, but
at 200 m the 10–20 μm size-fraction predominated (>40% of all
aloricate ciliates) (Fig. 6).

In all three gyres, the abundance proportion of aloricate cili-
ates in the 10–20 μm size-fraction decreased from surface layers
to 75 m (in both the tropical West Pacific and Bering Sea) or 50 m
(in the Arctic Ocean), then increased to 200 m depth, while that
of the 20–30 μm size-fraction was relatively constant throughout
the water column to depths of 200 m. The abundance proportion
of aloricate ciliates >30 μm size-fraction first increased from sur-
face waters to 75 m (in both the tropical West Pacific and Bering
Sea) or 30 m (in the Arctic Ocean), but then decreased to 200 m
in all three water masses. In the layers of 30–75 m, the average
abundance proportions of aloricate ciliates >30 μm size-fraction
were about 4.4%, 4.9% and 3.8% higher than in surface layers in
the tropical West Pacific, the Bering Sea and the Arctic Ocean, re-
spectively (Fig. 6).

3.5  Lorica oral diameter size-classes and proportion of redundant
tintinnid species
From the tropical West Pacific to the Arctic Ocean, abund-

ance proportion of tintinnids with larger lorica oral diameter
(LOD) became higher (Fig. 7). Tintinnid species with LOD ran-
ging 12–16 μm and 24–28 μm size-classes were proportionally
most abundant (26.7% and 59.5%) in the tropical West Pacific
and the Bering Sea, respectively, while in the Arctic Ocean, tintin-
nids of LOD 60–64 μm size-class was proportionally most abund-
ant (50.0%) (Fig. 7).

Different seas had different tintinnid species richness pat-
terns in LOD size-classes, and proportions of redundant species.
Tintinnids ranging 28–32 μm and 32–36 μm LOD size-classes
were the two most species rich size-classes, with 9 and 8 tintin-
nid species, respectively, in the tropical West Pacific (Fig. 7). Tin-
tinnids of LOD ranging 60–64 μm size-class was the most species
rich (3 species) in the Bering Sea. In the tropical West Pacific and
Bering Sea there were 48 and 4 redundant species, with the pro-
portion of redundant species being 72.4% and 28.6%, respect-
ively. In the Arctic Ocean, four species were equally distributed in
four LOD size-classes, and there were no redundant species.

4  Discussion

4.1  Planktonic ciliate vertical distribution
In our study, the distributions of planktonic ciliates in the

oceanic area through the water column in the Bering Sea and the
Arctic Ocean were revealed to be “surface-peak” and “DCM-
peak” patterns, respectively. Though previous studies have not
specifically described the patterns in the vertical distribution of
planktonic ciliates in either of these two areas, their data re-
vealed that comparable patterns existed: high abundances were
reported from surface layers in the Bering Sea (Taniguchi, 1984),
and in the Arctic Ocean DCM at 40–80 m (Yang et al., 2015); while
a “bimodal-peak” pattern was reported from the Bering Strait to
the western Arctic Ocean based on average values (Xu et al.,
2018a). The surface peak in Xu et al. (2018a) might be due to high
values at shelf stations in the Bering Strait (Matsuno et al., 2014;
Yang et al., 2015; our unpublished data), so results of Xu et al.
(2018a) may be not representative for the oceanic Arctic Ocean.

Planktonic ciliate vertical distributions have been reported for
oceanic waters of the Pacific Ocean (Strom et al., 1993; Leakey et
al., 1996; Yang et al., 2004; Gómez, 2007; Sohrin et al., 2010; Zhao
et al., 2017; Wang et al., 2016, 2019). However, only Wang et al.
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(2019) explicitly described ciliate vertical distribution patterns as
having a “bimodal-peak” in the tropical West Pacific.

Several studies have shown ciliate abundance to be positively
correlated with Chl a concentration (Dolan and Marrasé, 1995;
Yu et al., 2013; Jiang et al., 2015; Xu et al., 2018a, b). Our studies
showed that there were ciliate peaks in the maximum Chl a layer,
no matter it is in the subsurface (DCM) or surface layer. Al-
though the tropical West Pacific and the Arctic Ocean had low

Chl a concentration in the surface, but there was no surface cili-
ate peak in the Arctic Ocean as in the tropical West Pacific. We do
not know the reasons of this phenomenon because there were
differences in surface temperature and salinity between the two
areas.

Low salinity in the Arctic Ocean might not be a decisive factor
for the low ciliate abundance in the surface layer. In the estuaries
such as Changjiang River Estuary, fresh water river discharge
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each layers in the tropical West Pacific, the Bering Sea and the Arctic Ocean. The red dashed box depicts the abundance proportions of
aloricate ciliates >30 μm size was greater than those in surface layers.
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Fig. 7.   Number of species and the abundance proportion of each tintinnid LOD (lorica oral diameter, μm) size-class in the tropical
West Pacific, the Bering Sea and the Arctic Ocean.
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causes low salinity (<30) as well as high Chl a and nutrient con-
centrations in the surface waters (Wang et al., 2013; Zhang et al.,
2015). In this case, ciliate in the surface freshwater was higher
than in the subsurface layer (Yu et al., 2015).

4.2  Abundance proportion of tintinnid to total ciliate
Abundance proportion of tintinnid to total ciliate have been

described for tropical and subtropical waters (Fig. 8) (Yang et al.,
2004; Gómez, 2007; Sohrin et al., 2010; Wang et al., 2016, 2019). In
the tropical West Pacific, average tintinnid abundance propor-
tions varied from 20% (Yang et al., 2004) to less than 10% (Wang
et al., 2016, 2019), and in other studies, abundance proportions
about 10% in surface equatorial waters to 5% in waters from
10°–15°N (Sohrin et al., 2010). Our result of 7.8% for the tropical
West Pacific is comparable to that of Wang et al. (2016) and
Sohrin et al. (2010).

Abundance proportion of tintinnid to total ciliates were un-
known for the Bering Sea and the Arctic Ocean. The abundance
proportion (42.6%) in the Bering Sea waters (52°–58°N) in our
study was higher than that (25%) for the same latitude (53°N)
along 160°W in the subarctic Pacific (Sohrin et al., 2010). We es-
timate previous abundance proportion (from the surface to 160
m depth) for the Bering Sea based on values in Fig. 2 of Tanigu-
chi (1984) to be about 50%, which is close to our result from this
region. The very low value (2.0%) we report for the Arctic Ocean
is consistent with Sherr et al. (1997), where tintinnids were repor-
ted to be rarely observed from 70°–90°N.

Our data and previous studies showed that the Bering Sea
and the Arctic Ocean had the highest and lowest abundance pro-
portion of tintinnids to total ciliates. Until now, environmental
factors responsible for these differences were unknown. Loricate
ciliates are adapted to high Chl a environment where food is suf-
ficient (Suzuki and Taniguchi, 1998). High Chl a concentration in
the Bering Sea might contribute to the high tintinnid abundance
proportion (Fig. 2).

4.3  Difference in aloricate ciliate size-fractions
The bathymetric distributions of different size-fractions of al-

oricate ciliates have been rarely reported from oceanic environ-
ments. Ours is the first report of the vertical distribution of aloric-
ate ciliate size-fractions in these three gyres. Our results reveal al-

oricate ciliates <20 μm size-fraction comprise about 45% of all
ciliates in surface waters of the tropical West Pacific. This result is
consistent with that reported for the northeast equatorial Pacific
(5°–11°N), where the average abundance proportion of aloricate
<20 μm to total ciliates in the surface was about 50% (Yang et al.,
2004), and the Red Sea (29.5°N, depth 650 m), where it was >50%
in surface water (Claessens et al., 2008).

No reports of the size-fraction composition of aloricate cili-
ates in the Bering Sea and the Arctic Ocean are known. In the
Prydz Bay (65°–68°S, Southern Ocean), the aloricate ciliates <20 μm
size-fraction represented about 40% of the total numbers of alor-
icate ciliate (Liang et al., 2018), which is both higher than in the
Bering Sea and the Arctic Ocean.

We found abundance proportion of aloricate ciliate >30 μm
size-fraction in each depth increased from the tropical West Pa-
cific to the Arctic Ocean. The Arctic Ocean has a lower percent-
age of smaller size-fraction aloricate ciliates. This result supports
Bergmann’s rule, that, in general, larger-bodied animals tend to
live further north than their smaller-bodied relatives (Bergmann,
1847). Some subarctic and subantarctic zooplankton tend to be
larger than their relatives in subtropical species (Reid et al., 1978;
Martin et al., 2006; Gallienne et al., 2001). For example, species in
genus Euphausia is 20 mm in body length in subarctic, while it is
only 8 mm in subtropical area (Reid et al., 1978).

Why proportionally more larger-sized aloricate ciliates occur
in subsurface layers, and more smaller-sized aloricate ciliates oc-
cur in deeper waters in all the three areas is unknown in vertical
direction. As maximum Chl a concentration layers occurred at
different depths in the three areas, we speculate that Chl a con-
centration might not be the reason.

4.4  Variation of dominant lorica oral diameter size-class and pro-
portion of tintinnid redundant species
Tintinnid LOD (lorica oral diameter) size-class in these three

seas has not been previously compared. Dominant tintinnid LOD
size-classes have been reported for the Bering Sea (Li et al., 2016)
and the Jiaozhou Bay (Feng et al., 2018). Our result that the dom-
inant LOD size-class (24–28 μm) in the Bering Sea is similar to
that (22–26 μm) of Li et al. (2016). The space difference in our
study that the dominant LOD size-class is large in the cold Arctic
Ocean, but small in the warm tropical West Pacific is similar to
seasonal changes in dominant LOD size-classes in the Jiaozhou
Bay (Feng et al., 2018), where it is larger (48–52 μm) in winter
than summer (24–32 μm). Thus, we speculate dominant LOD
size-class might be large in cold areas, which might be another
aspect of the Bergman’s Rule in tintinnids.

Proportions of redundant species in tintinnid assemblages in-
creased markedly from polar to low latitude areas in the north-
ern hemisphere. From 83°N to 37°N, this proportion increased
from 0% to 57% (Dolan et al., 2016), while in the Jiaozhou Bay
(36°N), this value was 50% all year round (Feng et al., 2018). We
found this value to continue increasing with progression from the
Arctic Ocean to 15°N, in a linear manner (Fig. 9). Further study is
needed to support whether this value will continue to increase
southward to equatorial waters.

5  Conclusions
We report changes in ciliate community characteristics in

some transects influenced by three gyres (the North Pacific Gyre,
the Subarctic Gyre and the Beaufort Gyre). Planktonic ciliates
manifest “bimodal-peak”, “surface-peak” and “DCM-peak” pat-
terns of bathymetric distribution in the tropical West Pacific, the
Bering Sea and the Arctic Ocean, respectively. The abundance
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Fig. 8.   Abundance proportions of tintinnids to total ciliates in
surface layers by latitude. Red dashed box: the tropical Pacific;
black dashed box: the Bering Sea; and blue dashed box: the Arc-
tic Ocean.
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proportion of tintinnid to total ciliate increased from the tropical
West Pacific to the Bering Sea, then decreased to the Arctic
Ocean. Abundance proportion of aloricate ciliate in larger size-
fraction increased from tropical West Pacific waters to the Arctic
Ocean. Finally, the dominant LOD size-class was small in the
tropical West Pacific waters, but large in the Arctic Ocean, with
the proportion of redundant species decreasing from the former
to the latter. Our results represent a snapshot of ciliate com-
munity structure in each gyre, which constitute a baseline for fur-
ther comparative study on temporal and spatial variation of cili-
ate communities in the three gyres.
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