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Abstract

The estimation of ocean sound speed profiles (SSPs) requires the inversion of an acoustic field using limited
observations.  Such inverse problems are underdetermined, and require regularization to ensure physically
realistic solutions. The empirical orthonormal function (EOF) is capable of a very large compression of the data
set. In this paper, the non-linear response of the sound pressure to SSP is linearized using a first order Taylor
expansion, and the pressure is expanded in a sparse domain using EOFs. Since the parameters of the inverse
model  are  sparse,  compressive  sensing  (CS)  can  help  solve  such  underdetermined  problems  accurately,
efficiently, and with enhanced resolution. Here, the orthogonal matching pursuit (OMP) is used to estimate
range-independent  acoustic  SSPs  using  the  simulated  acoustic  field.  The  superior  resolution  of  OMP  is
demonstrated with the SSP data from the South China Sea experiment. By shortening the duration of the training
set, the temporal correlation between EOF and test sets is enhanced, and the accuracy of sound velocity inversion
is improved. The SSP estimation error versus depth is calculated, and the 99% confidence interval of error is
within ±0.6 m/s. The 82% of mean absolute error (MAE) is less than 1 m/s. It is shown that SSPs can be well
estimated using OMP.
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1  Introduction
The water sound speed profile and sediment properties have

an important impact on the underwater sound propagation, and
they determine the sound field characteristics (Li et al., 2015,
2018; Zhang et al., 2016; Yang et al., 2011). For matched-field pro-
cessing, the estimation of ocean sound speed profiles (SSPs) re-
quires the inversion of an acoustic field using limited observa-
tions. Such inverse problems are underdetermined, and require
regularization to ensure physically realistic solutions. Tolstoy
(Tolstoy, 1992) has indicated that the acoustic fields that have
propagated through a range-dependent series of SSPs are
identical to those of fields which have propagated through simple
range-independent environments given by the average SSP. This
linearization avoids the unpredictable stalling of the range-de-
pendent model. And the fewer inversion parameters could effect-
ively reduce the calculation of optimization algorithm. Leblanc
(Leblanc and Middleton, 1980) has proved that the empirical or-
thonormal function (EOF) is capable of a very large compaction
of the data set, and the ocean sound velocity profile (SVP) data
bank analysis with EOFs provided for a large improvement in the
prediction model. However, regularization using EOFs often
yields low resolution estimates of ocean SSPs, and the estimated

SSP can be highly variable especially when internal waves or cur-
rents are strong (Lin et al., 2006; Siderius et al., 2001; Huang et al.,
2008; Li et al., 2012). This uncertainty can severely affect the ac-
curacy of inversion for other parameters (Siderius et al., 2001;
Huang et al., 2008). Because the EOF has a great relationship with
the time and location of the SSP training set, the acquisition of
EOF is restricted by SSP completeness and measurement time. In
order to improve the accuracy of sound velocity inversion, we
have shortened the duration of the training set to enhance the
temporal correlation between EOF and test sets.

Since the leading-order EOFs often explain much of the in-
formation, the SSP can be expressed by retaining only a few lead-
ing-order EOFs. For ocean SSPs, usually no more than 5 EOF
coefficients have been used to reconstruct ocean SSPs (Huang et
al., 2008). So the SSP is sparse, i.e., few non-zero parameters (out
of many) explain the observations, therefore can be compressed.
In this paper, the SSPs in range-independent ocean environ-
ments are resolved using compressive sensing (CS) (Candès,
2006; Elad, 2010), and the orthogonal matching pursuit (OMP)
(Pati et al., 1993) is used as the sparse solver. CS asserts that para-
meters can be recovered robustly for certain highly underde-
termined linear problems via sparse regularization of a least-  
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squares cost function, provided that the solutions are sparse (Bi-
anco and Gerstoft, 2016). In ocean acoustics, CS has found sever-
al applications in matched field processing (Mantzel et al., 2012;
Forero and Baxley, 2014) and beamforming (Edelmann and
Gaumond, 2011; Choo and Seong, 2018). As the most common
greedy algorithm, the OMP method and a series of improved al-
gorithms are computationally cheaper and converge quickly with
less error.

The data set is the temperature and depth (TD) data collec-
ted in the South China Sea (SCS). Here, the inversion for SSPs is
formulated as an underdetermined linear problem where SSPs
are parameterized in a sparse domain using EOFs. In Section 2,
EOFs, the OMP algorithm and sparse reconstruction methods are
introduced. In Section 3, it is demonstrated that SSPs can be es-
timated with acceptable error using a few of coefficient. Section 4
is the conclusion.

2  Parameter sparsification and compression reconstruction

2.1  EOFs and principal component analysis (PCA)
EOF analysis is capable of a very large compaction of the data

set. The method provides a very compact presentation of the total
statistical nature of the SSP data bank. EOF analysis can reduce
the dimension of continuously sampled SSPs by finding few spa-
tial patterns which explain much of the variance. It is assumed
that the SSP matrix is S, which are sampled over K discrete points
in depth and M instants in time.

S =


s s . . . sM
s s . . . sM
...

...
...

sK sK . . . sKM

 . (1)

s̄ = [̄s, s̄, · · · , s̄K]T

C = S− S̄

After averaging the M  SSPs, we can get the mean SSP,
. The mean SSP is subtracted to obtain the re-

sidual C, i.e., .

C = [c, · · · , cM] ∈ RK×M. (2)

The PCA method is one of the most widely used data com-
pression algorithms. The data is transformed from the original
coordinate system to the new coordinate system. When trans-
forming the coordinate system, take the direction with the largest
variance as the coordinate axis direction, because the largest
variance of the data gives the most important information of the
data. The first new coordinate axis selects the direction with the
largest variance in the original data, and the second new coordin-
ate axis selects the direction that is orthogonal to the first new co-
ordinate axis and has the next largest variance. Repeat the pro-
cess, and the number of repetitions is the dimension of the ori-
ginal data. We find that the latter variances are almost zero. So,
we can ignore the rest of the axes, and just keep the first few axes
that have the most variance. In fact, this realizes dimensionality
reduction to the original data. The singular value decomposition
(SVD) selects the matrix composed of eigenvectors with the
largest eigenvalue, and can transforms the data matrix into the
new space and realize the dimension reduction. So we define the
SVD for the matrix C to be

CT = U ΣVT, (3)

V = [v, · · · , vK] ∈ RK×Kwhere  are eigenvectors of the matrix

Σ = diag
([
λ
, · · · , λ

K

])
∈ RM×K Ω = [λ, · · · , λK]

λ
 ⩾ · · · ⩾ λ

K

A=CCT∈RK × K ,  a n d  X=UΣ∈RM × K  a r e  t h e  c o e f f i c i e n t s .
 and  are the

eigenvalues of the matrix A. The EOFs vi with  are
spatial features of the SSPs which explain the greatest variance of
C. If M>K, V forms a basis in RK.

The percentage of total fit energy is defined as

Ei =

i∑
j=

λ
j

trace (Σ)
. (4)

Thus, it is obvious that the largest eigenvalues are more stat-
istically significant than the smaller values. Moreover, one can
extract most of the statistically significant information with sever-
al vectors when the eigenvalues diminish rapidly. Further, it can
be said that the small eigenvalues are more subject to noise (Leb-
lanc and Middleton, 1980).

2.2  SSP reconstruction using EOFs
Since the first few EOFs often explain much of the informa-

tion in C, the SSP can be compressed by retaining only the lead-
ing P order EOFs,

Ŝ
T
= S̄T + XPVT

P, (5)

where VP∈RK×P is the dictionary containing the P leading-order
EOFs and XP∈RM×P is the dictionary coefficient vector. Since the
entries in XP are orthonormal, the coefficients are solved by

X̂P =
(
ŜT − S̄T

)
VP. (6)

For ocean SSPs, P usually is no more than 5. And for a K-point
discretized ocean SSP,

ĉ (X) = c + X̂PV
T
P, (7)

where c0∈RK is the mean SSP.

2.3  Sound pressure sparse reconstruction and OMP
The sound pressure observed from a vertical line array (VLA)

of hydrophones in ocean environment is forward-modeled using
normal modes (adopting KRAKENC normal mode (Porter,
1992)). Since CS is a technique for finding sparse solutions of un-
derdetermined linear systems, the non-linear response of the for-
ward model to SSP is linearized using a first order Taylor expan-
sion. The pressure pobs∈CN

r received at an Nr element VLA is
modeled by KRAKENC as

pobs = p (X) + n, (8)

where p(X)∈CN
r is the normal mode propagation given the SSP

c(X) and n∈CN
r is Gaussian white noise. Here, the source and the

other ocean environments are known and included in the p(X)
term.

Slightly perturb the reference SSP, the non-linear response of
p(X) to SSP perturbations is linearized using the first order Taylor
expansion

p (X) ≈ p () +
∂p (X)

∂X
|X= X = p () + DX, (9)
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D = [d, · · · ,dK] ∈ RM×K
where p(0) is the pressure when the SSP equals to the reference
SSP c0, and the matrix  contains the dif-
ferential solution of the Nr pressure observations relative to the K
shape function in V. The column di is calculated using finite dif-
ferences, by slightly changing the ith coefficient and keeping the
other coefficients at zero.

di = limΔt→

p

(
+



Δi

)
− p

(
− 


Δi

)
Δi

, (10)

where ∆i∈RK has one non-zero element in the ith position. Thus,
the problem can be seen as an optimization problem for estima-
tion X from observations f,

f (X) = p (X)− p () = DX. (11)

H

An OMP method (Pati et al., 1993) is a greedy algorithm
choosing a waveform that is most approximate the signal in each
iteration. Given a collection of vectors D={di} in a Hilbert space

, let us define

Q = Span {dn} , and W = Q⊥ (in H) . (12)

f ∈ H
D is the dictionary and its vector is dn, are normalized (‖dn‖=1).
Assume the following kth order model ( ) is

f =
k∑

n=

ak
ndn + Rkf,with ⟨Rkf,dn⟩ = , n = , · · · , k. (13)

ak
n

where f is the current approximation, and Rkf the current resid-
ual (error). The superscript k, in the coefficient  shows the de-
pendence of this coefficient on the model-order. When update
this kth-order model to a model of order k+1,

f =
k+∑
n=

ak+
n dn + Rk+f,with ⟨Rk+f,dn⟩

= , n = , · · · , k+ . (14)

Since elements of the dictionary D are not required to be or-
thogonal, let,

dk+ =

k∑
n=

bk
ndn + γk,with ⟨γk,dn⟩ = , n = , · · · , k. (15)

k∑
n=

bk
ndn = PQKdk+ γk = PQK

⊥dk+

{d, · · · ,dk}

Thus , and , is the compon-

ent of dk+1 which is unexplained by .
Using the auxiliary model (Eq. (15)), it may be shown that the

correct update form the kth-order model to the model of order
k+1, is given by

ak+
n = ak

n − αkb
k
n, n = , · · · , k (16)

ak+
k+ = αkand , where

αk =
⟨Rkf,dk+⟩
⟨γk,dk+⟩

=
⟨Rkf,dk+⟩

∥γk∥

=
⟨Rkf,dk+⟩

∥dk+∥ −
k∑

n=

bk
n ⟨xn,dk+⟩

. (17)

It also follows that the residual Rk+1 f satisfies, Rk f=Rk+1 f+αkγk,
and

∥Rk f∥ = ∥Rk+ f∥ +
∥⟨Rk f,dk+⟩∥

∥γk∥
. (18)

The OMP algorithm is initialed by R0 f= f, f0=0, and k=1. For
nonorthogonal dictionaries, OMP will in general converge faster
than MP (Mallat and Zhang, 1993). For any finite size dictionary
of K elements, OMP converges to the projection onto the span of
the dictionary elements in no more than K steps. Furthermore
after any finite number of iterations, OMP give the optimal ap-
proximation with respect to the selected subset of the dictionary.
This is achieved by ensuring full backward orthogonality of the
error. The OMP method need to determine the number of non-
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Fig. 1.   Flow chart of the experiment process and SSP inversion.
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zero elements, according to the EOF method, here, we chose 4
EOFs to represent the SSP. The data processing and parameter
inversion process are shown in Fig. 1.

3  Experimental results
The experiment was conducted in September 2015, in the

north of the South China Sea. The acoustic source, from the
towed sound source at the depth of 40 m, transmitted chirp sig-
nals at frequencies between 260 and 360 Hz. A TD survey was
conducted during the experiment to provide SSP data and a ver-
tical line array (VLA) was deployed together.

For the waveguide, the water depth is assumed to be the wa-
ter depth at the TD array for range-independent processing. The
seafloor is composed by a halfspace with a density of 2.0 g/cm3,
and a compressional sound speed of 1 800 m/s. The replica field,
generated by a 300 Hz acoustic source at 40 m depth, was
sampled at 10 km range by Nr evenly spaced VLA elements span-
ning 2 to 130 m depth, and the attenuation of the basement is
0.1 dB/m.

The SSP data were recorded every 30 s, over a 15 h period,
from 23 to 77 m depth, with 3–4 m spacing (20 points). The SSPs
are interpolated to K=66 points, with 2 m spacing, and the num-
ber of profiles is M=1 750. The SSP data sets are shown in Fig. 2.

Considering that the depth range of the TD chain is 23–77 m,
and the whole SSP is required to calculate the replica field, iso-
thermal layer expansion can be applied to reconstruct the whole
SSP. During the experiment, CTD (conductivity, temperature,
and depth) was used once to measure the sea depth, temperat-
ure, salinity and sound velocity near the TD chain, from 0.1 to
81.7 m depth, with 0.1 m spacing. According to the salinity in-
formation measured by the CTD, the sound velocity can be cal-
culated using the empirical sound speed formula (Chen and
Millero, 1977). The full SSP profile data was set as the training set.
The SSPs after the reconstruction of the whole sea depth are
shown in Fig. 3.

The mean SSP is calculated, and the experimental configura-
tion is shown in Fig. 4.

3.1  Obtaining EOFs from training data
The residual sound speed is shown in Fig. 5a, and the max de-

viation from the mean SSP is more than 10 m/s. EOFs are calcu-
lated by the SVD method (Eq. (3)), and Fig. 5b is a plot of the per-
centage of total fit energy as a function of the number of eigen-
vectors used. It is apparent that the first few eigenvectors are very
effective in the fit. The plot shows that four eigenvector sets of

basis vectors “extract” 97.7% of the data set energy. Figure 5c is a
plot of the leading 15-order coefficients for all the SSPs from the
training set. It indicates that the coefficients decrease rapidly,
and the high-order coefficients are close to zero. The leading or-
der EOFs are shown in Fig. 6. The first eigenvector in Fig. 6 has no
zeroes, and it has its largest excursion near the middle of the
ocean. Thus, negative thermocline account for most of the en-
ergy in the variation in this vector. The second eigenvector has
one zero, and the remainder of these plots indicate a behavior
like algebraic polynomials—each increase in order being accom-
panied by an additional zero.

Figure 7 shows the compressed error versus depth for 1 000
randomly SSPs reconstructed by four EOF components. This plot
shows the 68% confidence interval (CI), 95% CI, and 99% CI of er-
ror respectively from inside to outside. The standard deviation of
error (STD) is then

STD (zi) =

(
/Ns

Ns∑
i=

(ci − c̄)
)/

(Ns)
/

, (19)

c̄
where ci is the compressed sound speed by four EOFs at the
depth of zi (m), and  is the mean value of the Ns profiles. The SSP
reconstructed error changes versus depth, and the greater error
happens in the negative thermocline layer. As shown in Fig. 7,
the great reconstructed error by four EOFs is less than 0.1 m/s,
which is acceptable.

The coherent matrix for the EOFs in Fig. 8a shows the com-
ponents in the EOF dictionary are approximately orthogonal.
Figure 8b shows the correlation ship between the EOFs and the
mean SSP variance in Fig. 6a. We can see that as the order in-
creases, the correlation decreases, and the correlation coefficient
decreases rapidly.
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Fig. 2.     The sound speed profiles measured by TD chain from
09:00 to 24:00 (GMT), recorded every 30 s.
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Fig. 3.   The whole reconstructed SSPs, recorded every 30 s.
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Fig. 4.   Experimental configuration and mean SSP.
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3.2  Compressive estimation of SSP

The performance of OMP is analyzed. It is assumed that the RNr×K

signal is X, and X is a vector with P non-zero coefficients. The

length of signal X is K, and the dictionary D∈  is a random
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Fig. 5.   The EOF method. a. The residual sound speed, b. percent of total energy fitted with limited sets of EOF’s, and c. the EOF
coefficient.
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Fig. 6.   EOF derived from SSP data.
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Gaussian matrix. The length of the observation vector is Nr, and
the sparsity P is set to 2, 4, 6 and 8, separately. For each case OMP
is applied to 1 000 realizations (without noise) to allow statistical
analysis. The performance is quantified in terms of the probabil-
ity of correct inversion, defined here as achieving residual errors
less than 10–6. Results are given in Fig. 9.

As can be seen from Fig. 9, the larger the sparsity, the larger
the number of observations are required to achieve the same ac-
curacy. From the above discussion, it can be seen that the lead-
ing 4 EOFs can explain 97.7% of the SSP information. Consider-
ing the difficulty brought by increasing the dimension of the ob-
servation vector, Nr is set as 29. And the recovery probability is
95.7% in this case (P=4).

Figure 10 shows the estimated SSP with four components

(synthetic) with a 30 dB SNR. With one realization of Gaussian
white noise, the EOF coefficients are estimated. As shown in
Fig. 10, the solution is closed to the true SSP with the max error
being 0.9 m/s.

The robustness of the EOF inversion is tested by finding
sparse estimates with a 30 dB SNR using a standard deviation
metric. The test profiles are selected from the training set one by
one. Figure 11a shows the estimated SSPs, and Fig. 11b shows the
68% CI, 95% CI and 99% CI of error respectively from inside to
outside. It shows that 99% CI of SSPs error is within 0.8 m/s, and
the error in the two isothermal layers is within 0.2 m/s. It also can
be seen that the error increases in the negative thermocline layer.
This result is consistent with Fig. 7. The main reason is that when
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Fig. 10.   OMP estimates of four SSP EOF coefficients form noisy
observations (SNR=30 dB). a. EOF coefficients, and b. the corres-
ponding SSPs.
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Fig. 7.   SSP reconstructed error with 4 EOFs.
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Fig. 8.     EOF analysis. a. Coherence of EOFs, and b. fraction of
mean SSP variance explained by EOFs.
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Fig. 9.   Percentage of input signals recovered correctly (K=66).
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the first 4 order EOFs are used to reconstruct the sound velocity
profile, the SVP loses more information in the negative thermo-
cline layer. Figure 11c shows that the estimated mean SSP is
slight larger than the measured mean SSP. This is likely due to
the positive numbers are predominate in the first two EOFs (Fig. 6),
and it can be seen from Fig. 5c that the coefficient of the first two
EOFs have the largest value range, so their weights are the
largest. These two reasons make the estimated mean SSP be
slightly higher than the measured value. By comparing the cita-
tion (Bianco and Gerstoft, 2016), it is found that the OMP al-
gorithm in this paper is more accurate than CVX toolbox.

The mean absolute error (MAE) of all results is shown in Fig. 12a,
and the distribution of the MAE is shown in Fig. 12b. It can be
seen from Fig. 12 that the MAE of nearly half of the results are less
than 1 m/s, and there are still quite a few MAEs between 1 m/s

and 2 m/s. Meanwhile, it can be seen from Fig. 11 that the estim-
ated SSP has little fluctuation and fails to reflect the existence of
internal waves. This is mainly due to the fact that all 15-h SSPs
were used in the calculation of EOFs. Therefore, when the SSP
was reconstructed with EOFs, only the average trend during this
period was retained. Therefore, we can shorten the length of
training set to improve the accuracy of sound velocity inversion.

Figure 13 shows the EOFs trained on shorter SSP training sets
(short time span). Here, the SSP training set is a 30 min period.
Through the comparison with Fig. 6 (long time span), we find
that EOFs change in Fig. 13 are more subtle and higher resolu-
tion.

Figure 14a shows the estimated SSPs, and Fig. 14b shows the
68% CI, 95% CI and 99% CI of error respectively from inside to
outside. Figure 14a shows that the inverted results are more
matched with the measured ones than Fig. 11a. Figure 14b shows
that 99% CI of error is within 0.6 m/s, and the error in the two iso-
thermal layers is within 0.1 m/s. It also can be seen that the error
increases in the negative thermocline layer. This result is consist-
ent with Fig. 11.

The MAE of all results is shown in Fig. 15a, and the comparis-
on of distribution of the MAE is shown in Fig. 15b. It can be seen
from Fig. 15b that MAE peaks around 0 and 0.7 m/s, respectively.
Figure 15c shows the cumulative distribution and 82% of the
MAEs are less than 1 m/s in the short-time-span method. Obvi-
ously, shortening the time span of training set can improve the
SSP inversion precision. It shows that proper update of EOF
training set can improve the inversion accuracy. The reason is
that the EOF has a great relationship with the time and location
of the SSP data sets. The acquisition of EOF is restricted by SSP
completeness and SSP measurement time. The EOF obtained by
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Fig. 11.   The estimated SSPs, SNR=30 dB (a) SSP estimation er-
ror versus depth (b), and mean SSP (c). Four EOFs are chosen to
represent the SSP.

0 500 1 000 1 500 2 000
0

1

2

3

4

Number of signal

a

0 1 2 3 4
0

50

100

150

200

Mean error/m·s-1

M
ea

n
 e

rr
o
r/

m
·s

-
1

b

N
u
m

b
er

 o
f 

re
su

lt
s

 

Fig. 12.   The mean absolute error of inversion results (a) and dis-
tribution of MAE (b).
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different amounts of SSP data and in different seasons may vary

greatly, so the closer the measurement time and position of the

SSP training data to the test set, the higher the accuracy of inver-
sion or reconstruction will be.

For the short-time-span method, we choose the first 30 min
data to study the effect of SNR. The effect of SNR on the mean es-
timation error is shown in Fig. 16. Figure 16 shows that increas-
ing the SNR will reduce the mean error, that is, the algorithm can
break-down if the SNR of the measurements is too low.

4  Conclusions
The pressure observed by VLA is non-linear to SSP, but it can

be linearized using a first order Taylor expansion. Since the SSP is
sparse, it can be compressed by OMP. It is shown that, with me-
dium SNR, the fine-scale SSP structure is well estimated using
OMP. The SVD algorithm is applied to ocean SSP data to calcu-
late EOFs. It is shown that the EOFs trained on a short time span
are more subtle and have higher resolution. With proper up-
dated EOFs, the OMP algorithm can further improve SSP inver-
sion resolution with negligible computational expense. This
could provide improvements to geoacoustic inversion, matched
field processing, and underwater communications.

The restrictive condition of this approach is that the other
ocean environments (such as, water depth, array tilt and sedi-
ment parameters et al.) needed to know to calculate the matrix D.
Therefore, the SSP inversion requires good knowledge of the
physical properties of the ocean environment. If the environ-
ment is not sufficiently accurate, a situation referred to as mis-
match, OMP can break down even if the signal-to-noise ratio of
the measured signal is high. Therefore, the method in this paper
is only applicable to the situation where the other environments
are slowly changing and known. However, in most cases, the wa-
ter depth and sediment characteristics vary with the range and
are unknown. In this case, other methods are needed to ensure
the accuracy of SSP inversion, such as focalization method
(Collins and Kuperman, 1991).

0

50

100

D
ep
th
/m

D
ep
th
/m

D
ep
th
/m

-0.5 0 0.5

Magnitude Magnitude Magnitude

Magnitude Magnitude Magnitude

Magnitude Magnitude Magnitude

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

0

50

100

-0.5 0 0.5

a b c

fed

g h i

 

Fig. 13.   EOFs derived from one of the shorter SSP training data.
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Fig. 14.   Short time span. a. The estimated SSPs, SNR=30 dB; and
b. SSP estimation error versus depth. Four EOFs are chosen to
represent the SSP.
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Fig. 15.     The MAE of inversion results by short time span (a),
comparison of distribution of MAE (b), and comparison of the
cumulative distribution (c).
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Fig. 16.   Mean estimation error versus SNR.
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