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Abstract

The mesoscale eddy is a typical mesoscale oceanic phenomenon that transfers ocean energy. The detection and
extraction of mesoscale eddies is an important aspect of physical oceanography, and automatic mesoscale eddy
detection algorithms are the most fundamental tools for detecting and analyzing mesoscale eddies. The main data
used in mesoscale eddy detection are sea level anomaly (SLA) data merged by multi-satellite altimeters’ data.
These data objectively describe the state of the sea surface height. The mesoscale eddy can be represented by a
local equivalent region surrounded by an SLA closed contour, and the detection process requires the extraction of
a stable closed contour structure from SLA maps. In consideration of the characteristics of mesoscale eddy
detection based on SLA data, this paper proposes a new automatic mesoscale eddy detection algorithm based on
clustering. The mesoscale eddy structure can be extracted by separating and filtering SLA data sets to separate a
mesoscale eddy region and non-eddy region and then establishing relationships among eddy regions and
mapping them on SLA maps. This paper overcomes the problem of the sensitivity of parameter setting that affects
the traditional detection algorithm and does not require a sensitivity test. The proposed algorithm is thus more
adaptable. An eddy discrimination mechanism is added to the algorithm to ensure the stability of the detected
eddy structure and to improve the detection accuracy. On this basis, the paper selects the Northwest Pacific
Ocean and the South China Sea to carry out a mesoscale eddy detection experiment. Experimental results show
that the proposed algorithm is more efficient than the traditional algorithm and the results of the algorithm
remain stable. The proposed algorithm detects not only stable single-core eddies but also stable multi-core eddy

structures.
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1 Introduction

The mesoscale eddy is an important form of seawater trans-
port having a long-term closed state and a spatial scale ranging
from dozens to hundreds of kilometers and a time scale ranging
from a few days to a few hundred days. The mesoscale eddy is re-
sponsible for sea power transfer and mass transfer and affects
oceanic elements, such as oceanic temperature and salinity dis-
tributions. There are many factors of the formation of mesoscale
eddies. In general, ocean flow is affected by many factors, such as
wind, topography and ambient field flow, which forms meso-
scale eddies. The study of mesoscale eddies is important to mar-
ine military activities and fisheries.

The study of mesoscale eddies in the ocean can be divided in-
to the detection, observation and tracking of mesoscale eddies.
Data of the global sea level can be obtained from satellite alti-
meter data, and sea level anomaly (SLA) results can then be used

for the detection of mesoscale eddies. In the detection of meso-
scale eddies, existing automatic detection methods based on an
SLA map can be divided into four categories: methods using
physical parameters, methods employing wavelet analysis, meth-
ods using streamline geometry features and methods using sea
surface height anomaly characteristics.

The classic physical mesoscale eddy detection algorithm is
the Okubo-Weiss (OW) algorithm (Okubo et al., 1970), which
realizes the automatic detection of mesoscale eddies (Morrow et
al., 2004). This method is widely used in the mesoscale eddy ana-
lysis of oceans, such as the Tasman Sea (Waugh et al., 2006), the
Gulf of Alaska (Henson and Thomas, 2008) and the South China
Sea (Nan et al., 2011). There are two deficiencies of the OW al-
gorithm. Firstly, the parameter calculation may enlarge error in
the SLA and results in a misjudgment. Secondly, for the bound-
ary of mesoscale eddies, the algorithm cannot provide a precise
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closed contour but a scope.

A mesoscale eddy detection method based on wavelet analys-
is (Doglioli et al., 2007) regards vorticity as a semaphore radar
signal. By processing this vorticity obtained from SLA data, the
obtained signal curve is decomposed and mapped onto a vorti-
city space to extract mesoscale eddies. This method makes full
use of the rapidity of the wavelet transform and the signal sensit-
ivity and is able to handle massive data. However, the limit of the
dimensions of data sets leads to the low identification accuracy of
eddies and the detection ability is poor for mesoscale eddies with
an irregular closed contour shape of the SLA value.

The winding angle (WA) method is a representative detection
algorithm based on geometrical features (Ari Sadarjoen and Post,
2000) and has been improved and applied to the detection of
mesoscale eddies (Chaigneau et al., 2008). The default structure
of the WA algorithm is a single-core structure. The maximum
range of the SLA closed contour is found as the boundary around
an initial core point. This algorithm is simple and easy to under-
stand and is the most popular algorithm for the detection of
mesoscale eddies. However, the algorithm has deficiencies in
that it is unable to find multi-core structures, has high algorithm
complexity and requires a sensitivity test for the setting of para-
meters. Another method based on the geometric streamline fea-
ture is the vector geometry (VG) method (Nencioli et al., 2010),
which uses the geometrical characteristics of the velocity vector
to judge eddy cores. The velocity of the flow field is a minimum
around an eddy core, and the tangential velocity of the flow field
increases with the distance from the core. At the eddy border, the
tangential velocity of the flow field begins to abate. The VG meth-
od uses the maximum peripheral speed at the boundary.
However, the situation is complex when judging the mesoscale
eddy boundary and eddy core, and two additional parameters are
needed to limit the detection results while the parameter setting
requires a sensitivity test.

The SSH-based method is an example of a method of auto-
matic mesoscale eddy detection without a threshold value
(Chelton et al., 2011) that aims to avoid the complicated prob-
lems caused by the threshold setting. The SLA extreme-value
point is used as the eddy core, the opposite polarity eddy bound-
ary is taken as the starting point, the closed contour line is
searched for in steps of 1 cm from the outer boundary toward the
eddy core, and the outermost SLA closed contour is found as the
boundary of the mesoscale eddy. Compared with traditional al-
gorithms, the SSH-based method can detect multi-core struc-
tures but does not judge the shape of the eddy, and there are
many unstable multicore structures in the detection results. It is
necessary to initialize the eddy area in the process of searching
for the multicore structure. The sensitivity of the parameter set-
ting is high and the adaptability is poor.

The hybrid detection (HD) algorithm is a hybrid algorithm
combining traditional OW and SSH-based methods (Yi et al.,
2014). The combined application of the OW algorithm and SSH-
based method to initial cores reduces the effect of noise on the
OW algorithm and avoids the sensitivity of threshold setting dur-
ing initialization. This algorithm improves the accuracy of meso-
scale eddy boundary detection by reducing the incremental step
size and eliminating mesoscale eddies with irregular boundaries
to guarantee the stability of the selected-scale eddies. The main
problem that the HD algorithm solves is that it finds multicore
structures that are more stable, but the parameter setting in the
eddy selection process requires a sensitivity test and the al-
gorithm steps are complicated. Another algorithm distinguishes
color attributes of an SSH image to extract mesoscale eddies

(Zhang et al., 2014). The algorithm separates a region having a
defined pixel density from a region of low pixel density to detect
the boundaries of mesoscale eddies. The same method has been
used in handling SST images (Zhang et al., 2015). In the case of
an SSH-image-based method, the algorithm has too many initial-
ization parameters and the parameter setting requires a sensitiv-
ity test, resulting in low adaptability of the algorithm. A parallel
method has been added to the SSH-based algorithm to improve
the operation efficiency of the algorithm (Liu et al., 2016). The
computational efficiency is greatly improved by dividing the
global data set into several sub-regions.

The traditional mesoscale eddy detection algorithm has defi-
ciencies, such as the sensitivity of the parameter setting, the
problem of defining the initial threshold value for the eddy core,
and the stability problem of the mesoscale eddy result. To solve
the above problems, the present paper proposes the density-
based clustering mesoscale eddy detection algorithm (DC).
Density clustering algorithms have been used for data analysis in
machine learning, and stable mesoscale eddies can be filtered by
establishing potential relations among the data. The advantages
of the proposed algorithm are that it has fewer parameters, the
parameters have higher stability, it is easier to set parameters,
and parameters are initialized mostly according to the attributes
of the data set. For the same attribute data sets, the parameters
are the same and the method has good adaptability. The pro-
posed algorithm does not use the core points of the mesoscale
eddies as the initialization condition and thus avoids the sensitiv-
ity problem of the initialization threshold of the initial core
points. For the stability problem of finding mesoscale eddies, the
algorithm guarantees the stability of the results by shape discrim-
ination, and irregular mesoscale eddy structures in the process of
convergence are filtered out.

2 Data and method

2.1 Altimetry data

The satellite altimeter product used in this paper is fusion
data of SLA recorded by multiple satellites and distributed by
AVISO (http://www.aviso.oceanobs.com). The SLA data are
merged altimeter data recorded by TOPEX/Poseidon, Jason-1,
Jason-2, ERS-1, ERS-2 and Envisat satellites with spatial resolu-
tion of 0.25° x 0.25°. Daily altimeter data are the integration of
data from at least two satellites. As a result, the data of different
satellites can be calibrated, and the precision and consistency of
the fusion products can be ensured at the same time.

2.2 Eddy detection methodology

In general, a mesoscale eddy detection algorithm aims to find
the potential internal relation within SLA data and to find the
outermost closed contours through interpolation and thus
identify eddies. In SLA data there are plentiful regional maxim-
um and minimum values, which are regarded as the cores of ed-
dies. There are several closed contours of SLA data, which may
contain one or more extreme points with the same polarity. Such
a closed region can be seen as a mesoscale eddy, and the data
points contained in the closed region can be regarded as data
points having the same attributes with potential relations.

In the field of machine learning, a clustering algorithm is used
to discover potential relations within a data set. The present pa-
per therefore includes a clustering algorithm in the detection
process and transforms the algorithm into a process of discover-
ing and recognizing a data set having the same attributes. The
present paper uses a density-based clustering method for the
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clustering process. The advantage of the density-based cluster-
ing method lies in the method’s better adaptability to the irregu-
larity of clustering patterns and better adaptability to the number
of clustering classes. For the SLA-based data set used in the
present paper, data characteristics and data density are fixed val-
ues. Disadvantages of the traditional density-based clustering
method, such as the high sensitivity of the parameter setting, are
overcome in this case. For different data sets with the same prop-
erties, the same MinPts (minimum points) and ¢ values are
chosen, which shows the strong adaptability and intelligence of
the algorithm and the reduction of human intervention.

The process of detection by the proposed mesoscale eddy al-
gorithm is divided into five steps. (1) Data are segmented to sep-
arate the non-eddy region from the eddy region. (2) Clustering is
conducted to recognize mesoscale eddies and establish intrare-
gional relations. The preprocessed data set is divided into mul-
tiple sub-data sets and each sub-data set represents a potential
mesoscale eddy. (3) Data are classified and filtered to obtain sub-
data sets that meet preconditions; data that are too large or too
small ought to be filtered out. (4) Shape discrimination is con-
ducted to judge the shape of a mesoscale eddy and to ensure the
stability of the selected mesoscale eddy. (5) The outermost con-
tour is determined to find the closed outermost contours and the
result is output. To avoid repeating operations in the subsequent
iteration process, the data point is deleted from the original data
set for the sub-data set obtained a closed contour.

The remaining data sets that are not empty enter the next iter-
ation process, the filter value is increased according to a preset
increment, and the above five steps are re-executed until the re-
quired data set is empty.

In each iteration, the quantity of data required to manage be-
comes smaller. The algorithm converges when the data set is
empty. Results are integrated to obtain all the outermost closed
contours. Results are then output and the detection process fin-
ishes. A flowchart of the algorithm is shown in Fig. 1. The whole
algorithm goes through several iterations, with only the data seg-
ment value changing in the iteration and the other parameters
remaining unchanged.

2.2.1 Data segmentation: preprocessing

To distinguish data sets by different attributes and to separ-
ate an eddy region from the surrounding environment, the data
sets are divided into two classes according to the algorithm ob-
jective. In the algorithm, the data points contained in the anticyc-
lonic eddy range are the data points whose SLA values are great-
er than zero while the data points contained in the cyclonic eddy
range are the data points whose SLA values are smaller than zero
in most cases. The algorithm initially divides all data points into
two categories, those whose SLA values are greater than zero and
those whose SLA values are smaller than zero. In the process of
detecting cyclonic eddies, the present paper clusters the data sets
with SLA values smaller than zero, then uses a data increment of
-1 cm to partition the data sets and separates an eddy region
from the non-eddy region. In the process of determining the anti-
cyclonic eddies, the present paper considers the data points
whose SLA values are greater than zero, and the steps are oppos-
ite those followed in the process of recognizing a cyclonic eddy.

2.2.2 Cluster analysis: association management

The present paper uses the density-based clustering method
to analyze the partitioned data set. The advantage of the density-
based clustering method is that it can identify the class character-
istics of irregular shapes, and there is no need to specify the core
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Fig. 1. Flowchart of the DC method.

points in advance. In addition, it can automatically filter out
noisy points in the clustering process and thus avoid their effect
on the data clustering result (He et al., 2014). The algorithm com-
plexity of the density-based clustering method is based on the
number of selected data sets (n) and the complexity of the al-
gorithm O(n2). Clustering is the most complex part of the al-
gorithm. The complexity of the algorithm can therefore be
defined as O(n2), which is similar to that of the SSH-based al-
gorithm (Chelton et al., 2011).

The notion of density-based clustering is defined as follows.

(1) The distance measure between points in the data set (DB)
is defined as

Dist(p,q) = \/(xp—xq)2 +(vp—¥4*, P,q € DB. 0]

(2) For a point p € DB, if a given object p such that within the
radius range of ¢ has at least MinPts samples, it is said that the
point in the radius range belongs to the data set e-nbhd (p).

(3) Given p, g € DB, if the distance between points g and p is
smaller than the distance ¢ and belongs to data set e-nbhd (p),
then point q is directly density-reachable from point p.

(4) For points p and g, if the sample can be directly arrived at
q from p by means of samples x,, x,, ..., X,, it is called density-
reachable. From the asymmetry of density reachability, it is con-
cluded that density-reachability cannot satisfy symmetry.

(5) If both points p and g are density-reachable, then they can
be called density-connected, which satisfies symmetry.

The density-based clustering method for a data set Cis as fol-
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lows. For any p and g with the same class label, p and g are dens-
ity-connected. For any p belonging to class C and for g € DB, ifp
and g are density-connected, then g can be added to class C. If
there is a point that cannot be classified into any class, it is called
a noisy point. In addition, if a point p has a class label and the
point set does not satisfy e-nbhd (p) from point p, then point p is
classified as a border point. Therefore, after rounds of density
clustering, several data sets can be obtained, and each point can
be classified as a border point or noisy point.

The basic idea of the density-based clustering method is to
classify high-density regions in different regions by separating
the parts with high data density from those with low data density.
The algorithm uses the phenomenon that the closer the meso-
scale eddy data are to the eddy core, the higher the data density
will be after data segmentation. In this way, a potential meso-
scale eddy region with high density can be separated from its sur-
rounding and adjacent mesoscale eddies. After density cluster-
ing, the data set can be divided into several different regions,
each of which is one or several potential mesoscale eddies.

In the process of density-based clustering, the sensitivity of
the parameters is tested according to the characteristics of the se-
lected SLA data. When the search radius is 0.25 (¢ = 0.25) and the
minimum number of points within the radius is four (i.e., MinPts =
4), the separated mesoscale eddy sub-data sets can be obtained
in the clustering process. When selecting different search border
lengths and numbers of points, the sensitivity of parameter cor-
relation may be too high, and the initialization definition can be
complicated, which may lead to an undivided difference between
different sub-data sets.

2.2.3 Data classification and selection: data set filtering

In clustering analysis, each data point can be assigned a class
label or classified as noise, and the data set can be divided into
several classes according to the class label. After eliminating data
that have been identified as a noisy point, the results of each class
label can be extracted separately to form a number of different
sub-data sets. The algorithm regards each formed sub-data set as
a mesoscale eddy containing all the data points, and the outer-
most contour should contain all the data points in this sub-data
set.

Considering the observation error in the altimetry and resolu-
tion of the AVISO fusion product, the recognition conditions for
sub-data sets and the standard for identifying mesoscale eddies
in literature (Chelton et al., 2011), the specific identification con-

124.0°124.5°125.0°125.5°126.0° 126.5° 127.0° 127.5° 128.0°128.5°E

22.5° T T T T T
N | a —

22.0°

T
iz

\

/!

21.5°

21.0°

* % % *
/

20.5°

ok W kM R ok ok
X XWX AR

M***

/{*****’A—**

20.0°

* % ¥ K X X K XK X ¥
#* ok MW M W W N W

19.5°

ER

¥ OE KR R ¥ X R %R ¥

OB OE N N N N W N N ¥
¥R OR R OE O ¥ E k%
¥ ¥ K ¥k ¥ ¥ % ¥ ¥ ¥ ¥

J

19.0°

/-

18.5°

\

[

|

18.0°

137

ditions are as follows. (1) SLA values of all grid points in the cyc-
lonic eddy (anticyclonic eddy) are smaller (greater) than that of
boundary SLA value. (2) The number of grid cells of the eddy is
not less than 5 and not more than 400. (3) The amplitude of the
mesoscale eddy is not less than 3 cm. (4) The distance to a nearby
grid point in the mesoscale eddy is less than 600 km.

2.2.4 Shape discrimination: stability criterion

For the obtained sub-data set of the same class of data, the at-
tributes in the data set are the longitude, latitude and corres-
ponding SLA values. Using the longitudes and latitudes of the
sub-data set, the position and shape of a data point in a certain
mesoscale eddy can be obtained. To ensure the shape and high
stability of the mesoscale eddy, this paper refers to the shape cri-
terion provided in the literature (Liu et al., 2016). The area of de-
viation is the area of a graph surrounded by a closed contour. The
area of the circle adopted as a decision graph is the minimum cir-
cular area that covers the closed contour (Fig. 2a). The ratio of
the formed graph to the standard graph is obtained. Existing al-
gorithms consider the shape of the eddy to be approximately reg-
ular and the structure of the eddy to be stable when the graph ra-
tio is greater than 55%.

In the proposed algorithm, the sub-data set is determined to
have a stable shape because the sub-data set can represent all the
data points contained in the selected mesoscale eddy. Finding a
minimum covering square is more convenient than finding a
minimum covering circle. A square is also a regular graph and is
more suitable for a data set that is discrete. The decision graph
used in this paper is therefore a square rather than a traditional
circle. The formulas for finding a square are:

lengthyige = max (lon;) — min (lon;) ,
lengthyign = max (lat;) — min (lat;) ,

length = max (I engthyide, lengthign) ,
Numsquare = (length x (1/resolution) + 1)?,

@

E I'T OXshape = Numdeviation/Numsquare .

It is straightforward to find the minimum covering square us-
ing the maximum and minimum values of longitude and latitude
in the sub-data set (Fig. 2b). In this paper, it is assumed that the
diameter of the minimum covering circle is equal to the side

length of the minimum covering square.
It is assumed that the radius of the minimum covering circle
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Fig. 2. Shape discrimination, with blue points representing positions of the data point set. a. A minimum covering circle, and b. a

minimum covering square.
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is 1, the area of the circle is 3.14, the area of the corresponding
square is 4, and the coverage of the circular area is 55%, corres-
ponding to coverage of the area of the square area of 43%. A ratio
is taken of the number of data in the sub-data set belonging to
the same category provided by the filtering process divided by
the number of data points included in the minimum covering
square. When the ratio is greater than 43%, it is believed that the
enclosed graph is a regular graph. A sub-data set enters the next
step when it is judged as a regular data set. Otherwise it skips the
next step and waits for the next loop for graph judgment again.

A sensitivity test of the parameters shows that the results are
more regular if the shape discriminant parameter set is large.
However, the mesoscale eddy will be too small or it is not pos-
sible to detect some mesoscale eddies directly. At the same time,
the computation time is long and there are many iterations of the
algorithm. When the parameters are set small, there are many ir-
regular eddy structures. These eddy structures should be divided
into smaller mesoscale eddies. Additionally, some mesoscale ed-

dies will be found twice because the selection range is too large in
the search process, leading to the repeated identification of ed-
dies.

2.2.5 Outermost closed contour determination: output results

After the shape judgment step, the algorithm moves to the
step of searching for closed contours. As the closed contour de-
tected should contain all points of the corresponding sub-data
sets, it is necessary to extend the selected sub-data sets to find a
closed contour over a larger range. A rectangle can be used to
represent the position at which the sub data set is located (Fig. 3a).
To extend the data set, this paper selects all the encircled longit-
udes and latitudes to add and subtract a resolution data point
and obtain an extended data set. The resulting data set is a rect-
angular data set with a slightly larger range than the original data
set; the border shown in Fig. 3a marks the expanded range of the
data set. All contours can then be found using the extended data
set (Fig. 3b).
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Fig. 3. Process of finding the outermost closed contour. a. Distribution of the clustering results, b. all contours obtained after the
extension process, and c. all closed contours on the SLA map and the identification of eddy structure.

In this step, it is necessary to find the closed contour among
all closed contours that are equal to the partition values in Sec-
tion 2.2.1, and this closed contour certainly exists.

2.3 Eddy detection

Figure 4 shows the process of the regional segmentation and
detection of an eddy. Figure 4a shows the SLA map before the de-
tection process while Figs 4b-g shows the sub-data set after clus-
tering analysis with a modified value of the data segmentation
process. Different colors represent different clustering effects.
Shape discrimination is carried out in accordance with the data
classification and selection preconditions. In the case that the
shape is judged to be regular, the outermost closed contour in
this region is determined and the result is output; otherwise the
process jumps to the next iteration.

Regions C and D are the two parts after the division of Region
B (marked in Fig. 4e), while region E is a part after the division of
Region D (marked in Fig. 4f), and suitable mesoscale eddies are
found in Regions A, C and E. Figure 4h shows three mesoscale
eddy structures as the final result.

3 Experiment on mesoscale eddy detection

Employing the proposed algorithm, we detected mesoscale
eddies in the Northwest Pacific and South China Sea (0°-50°N,
100°-160°E). In this region, there are many mesoscale eddies, the
numbers of cyclonic and anticyclonic eddies are relatively bal-
anced, and there are various eddy forms. The region is thus well
suited to testing the performance of the proposed algorithm.

3.1 Comparison with the SSH-based method
Mesoscale eddy detection algorithms have been well re-

&
b

Fig. 4. Process of regional segmentation and detection.
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searched in the literature. Classic algorithms include WA and
SSH-based methods. The SSH-based method is a widely used
eddy detection algorithm that is able to find multi-core struc-
tures. This paper compares the SSH-based method with the DC
algorithm in the mesoscale region (30°-45°N, 140°-155°E) of the
Northwest Pacific.

To ensure large differences in the eddy morphology between
two time nodes, we picked nodes more than 40 days apart for the
comparison experiments. With three time nodes, we can better
test the adaptability of the two algorithms to different data sets
and thus better compare the performances of the two algorithms
(Fig. 5). In general, both the DC method and traditional SSH-
based algorithm detect the main scopes of mesoscale eddies.
However, the SSH-based algorithm faces the problems of
threshold sensitivity and results instability.

Table 1 shows that the DC algorithm in most cases detects
more eddies than the SSH-based algorithm and with better ac-
curacy, as the DC algorithm avoids the threshold sensitivity prob-
lem. Meanwhile, avoiding error due to an excessive scope of the
closed contour, detection results obtained with the DC algorithm
and SSH-based algorithm are compared in Fig. 6. As the tradi-
tional SSH-based method simply aims to obtain closed contours
and the result would thus have irregular eddy shapes, results ob-
tained by the DC algorithm are filtered with the shape maximum
approximating a circle to guarantee the stability of the eddies de-
tected. In comparison with the traditional SSH-based method,
the SSH-based method used here regards the area between the
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Fig. 5. Comparison of detection results obtained with the DC al-
gorithm and SSH-based algorithm for a 2008 SLA map.

multiple eddies also as an eddy structure while the proposed al-
gorithm regards this region as a non-eddy area without pro-
cessing. This type of eddy structure is relatively small (Fig. 7).

3.2 Mesoscale eddy detection results

Figure 8 shows the results of mesoscale eddy detection in the
Northwest Pacific and the South China Sea obtained using the al-
gorithm proposed in this paper and the traditional SSH-based
method. There are many single-core structures and several
multi-core structures in this region. The present paper focuses on
solving the problem of how to select and maintain a stable multi-
core structure or how to divide an unstable multi-core structure
into several stable single-core structures.

A multi-core structure is a mesoscale eddy with two or more
eddy cores having the same polarity within the boundary. A
mesoscale eddy will sometimes undergo division, merging or
other processes in the course of its life. There are many multi-
core structures in the Northwest Pacific region, and the question
of whether to maintain or to break them down has seldom been

Table 1. Comparison of the number of eddies obtained with the
DC algorithm and SSH-based algorithm, where CE refers to a
cyclonic eddy and AE to an anticyclonic eddy

DC method SSH-bd method
Date

CE AE CE AE
20080201 20 16 14 13
20080320 19 14 16 13
20080501 19 13 19 15
142° 144° 146°E 142° 144° 146°E

42°

N

40°

38°

142° 144° 146°E 142° 144°

36° 36°

340 340

32° 32°

145°  146° 147° 148°E 145°

146°

147°  148°E

36° 36°

Fig. 6. Detailed comparison of detection results obtained with
the DC algorithm and SSH-based algorithm. The left column
presents results of the DC algorithm and the right column results
of the SSH-based algorithm.
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Fig. 7. Initialization difference between the DC algorithm and
SSH-based algorithm. a. DC algorithm, and b. SSH-based al-
gorithm.
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Fig. 8. Results of eddy detection for the region of the Northwest
Pacific and South China Sea on May 9, 2016. Contours fill warm
color indicate anticyclonic eddies while those filled with a cool
color indicate cyclonic eddies. a. Results of DC algorithm, and b.
results of traditional SSH-based algorithm.

mentioned in previous work. The first time that this problem was
addressed was the proposal of the SSH-based method for the de-
tection of a multi-core structure (Chelton et al., 2011), but owing
to the instability of the multi-core structure, the form is more
complex. In many cases, although the SSH-based algorithm can
detect a closed contour, it is unable to track the movement in the
process. The SSH-based method as a kind of detection algorithm
of a multi-core structure. It lacks a judgment of the eddy shape.
Although it overcomes the particular problem of traditional al-

gorithms that each eddy can have only one core, it cannot auto-
matically identify an irregular eddy structure and decompose it
to a more stable structure.

The DC algorithm proposed in this paper increases the stabil-
ity of found multi-core structures through the shape judgment.

Figure 9 shows the results of multi-core structure detection.
Figure 9a shows a segmentation of a larger scale eddy of irregular
shape, which contains more than one local maximum or minim-
um point on a larger scale. Using the proposed algorithm, we get
two stable single-core structures and one multi-core structure
having two extremum cores. Figures 9b-d shows that multi-core
structures are found and preserved. These multi-core structures
have relatively regular shapes with little fluctuation of the SLA
value within the contour.
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Fig. 9. Examples of eddy structure detection. “+” indicates the
extremum core.

4 Conclusions

To solve the problem of automatically detecting mesoscale
eddies from an SLA map, this paper proposed a combination of
the density clustering algorithm used in the field of machine
learning with a mesoscale eddy detection algorithm: the density-
based clustering mesoscale eddy detection algorithm.

The basic theory of this algorithm and traditional methods,
such as the WA and SSH-based algorithms, is the same in that we
search for the outermost closed contour with which to locate
mesoscale eddies. However, the proposed algorithm does not re-
quire an initialization process that searches for a local extremum
to define the cores of eddies and extracts a closed contour, and
rather extracts data features to detect regular mesoscale eddies
step by step.

The proposed algorithm takes advantage of the strong adapt-
ability of the density clustering algorithm to an unsupervised
data set and identifies potential relations by means of density
clustering for regions in which mesoscale eddies can be separ-
ated. By including eddy shape discrimination in the detection
process, the boundary of potential eddies is fitted within a min-
imum coverage square, and the coverage ratio is determined to
approximately judge whether the eddy shape is regular. The
method ensures the stability of the selected eddy structure, and
regular mesoscale eddy patterns are maintained to the maxim-
um extent.

In comparison with the traditional SSH-based algorithm, the
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proposed algorithm requires less parameter setting, and as an
automatic algorithm that eliminates manual intervention, it
avoids the sensitivity of the threshold setting. The detection res-
ults of eddy structures are more stable, and the eddy shapes are
more similar to regular patterns. The discovered mesoscale ed-
dies can also be used for subsequent research work and predic-
tion.
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