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Abstract

The present work is an analytical study of the influence of geometrical parameters, such as length, thickness and
immersion of the plate, on the reflection coefficient of a regular wave for an immersed horizontal plate in the
presence of a uniform current with the same direction as the propagation of the incident regular wave. This study
was performed using the linearized potential theory with the evanescent modes while searching for complex roots
to the dispersion equation that are neither pure real nor pure imaginary. The results show that the effects of the
immersion and the relative length on the reflection coefficient of the plate are accentuated by the presence of the
current, whereas the plate thickness practically does not have an effect if it is relatively small.
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1  Introduction
A submerged horizontal plate may serve as breakwater to

protect harbors, inlets and beaches from wave action. As with all
submerged structures, the horizontal plate does not obstruct the
ocean view, which is critical for recreational and residential shore
development. Moreover, the horizontal plate enables the circula-
tion of water above and beneath it; hence, its environmental im-
pact is minimal.

With the plate being a more or less thick rectangular struc-
ture, the parameters that come into play when interacting with
regular waves are the characteristics of the incident wave, the
geometry of the plate (length, thickness), its nature (porosity,
elasticity), its disposition (vertical, inclined or horizontal) and its
immersion. Several researchers are particularly interested in the
effect of the geometrical parameters during the interaction of reg-
ular waves with a submerged plate. Patarapanich (add the refer-
ence) showed analytically, using the wave plane model, that the
reflection coefficient depends on the relative depth of the incid-
ent wave, the immersion ratio of the plate and the length of the
plate relatively to the wavelength of the wave that propagates
above the plate (Patarapanich, 1984) and compared experiment-
al results with the solution obtained numerically by the finite-ele-
ment method (Patarapanich and Cheong, 1989). The interaction
of a rectangular structure with a regular wave was studied analyt-
ically by Zheng et al. (2007a, b), notably focusing on the effect of
the thickness, the immersion and the length of the structure on
the reflection coefficient, the hydrodynamic coefficients and the
forces exerted by the regular waves on the structure. The interac-
tion of regular waves with a thick plate in the presence of a per-
meable breakwater was numerically investigated by Hsu and Wu
(1998) and Rao et al. (2009), they experimentally studied the ef-
fect of the relative depth. The case of a porous plate was investig-

ated numerically (BEM) by Yueh and Chuang (2009). In 2014, Be-
hera and Sahoo (2015) investigated the interaction of a gravity
wave with a flexible porous plate. An experimental study on the
attenuation of regular waves by an inclined plate was presented
by Acanal et al. (2013). In 2014, Ning et al. (2014) presented a nu-
merical study on the higher harmonics during the interaction of a
nonlinear wave with a horizontal cylinder in the presence of a
current. In 2017, Bai et al. (2017) investigated the forces exerted
on a horizontal cylinder during the passage of a regular wave in
the presence of a sheared current. However, in these studies, the
effects of geometrical parameters on wave reflection by a sub-
merged plate in the presence of a current were not investigated.

In this work, we are interested in the effects of the geometric-
al parameters of a rigid and impermeable horizontal plate on the
reflection coefficient of regular waves propagating in the pres-
ence of a uniform current having the same direction as the incid-
ent wave. This study was conducted as part of the linear poten-
tial theory using the model of evanescent modes. The roots of the
dispersion equation are searched as complex numbers to obtain
solutions with real nonzero and imaginary nonzero parts (Erri-
faiy et al., 2016).

First, we present the formulation of the problem of the inter-
action of a regular wave with a horizontal plate in the presence of
a current. The velocity potential sought is in the form of a super-
position of the potential corresponding to the current and that
corresponding to a regular wave. The velocity potential in the
subdomains upstream and above the plate is the sum of the uni-
form current, two modes propagating in opposite directions and
a series of evanescent modes. In the subdomain downstream of
the plate, the velocity potential is the sum of the uniform current,
a mode propagating downstream and a series of evanescent
modes. In the subdomain below the plate, the velocity potential  
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is the sum of the uniform current, an oscillating horizontal cur-
rent and a series of evanescent modes. By means of the matching
conditions between the subdomains that express the continuity
of the velocity potential and of the horizontal velocity at the at-
tack and trailing edges of the plate, one obtains a linear algebraic
system whose unknowns are the constants involved in the writ-
ing of the potential. The resolution of this system allows us to de-
termine the reflection coefficient.

Second, we studied the effect of the geometric parameters on
the reflection of a regular wave by a submerged horizontal plate
in the absence of a current: the results concerning the effect of
the immersion ratio and the plate length during the interaction of
wave-thin plate are compared of those of Patarapanich and
Cheong (1989) and of those of Brossard et al. (2009). The results
concerning reflection by a thick plate are compared with those of
Liu and Iskandarani (1991).

Afterward, we studied the effect of geometric parameters on
the reflection of a regular wave by a submerged horizontal plate
in the presence of a current: the results are compared with those
of Rey and Touboul (2011) and with those of Lin et al. (2014). In
these two cases, the reflection coefficient is calculated using the
present model in two ways: first by supposing that the plate thick-
ness is zero and second by taking into account the real plate
thickness.

R max=
p

2

Finally, the model is used to predict the effects of the relative
plate thickness, the immersion ratio and the relative plate length
on the reflection coefficient. Notably, we investigated the effect
on the maximum of the reflection coefficient and on the reflec-
tion bandwidth. The reflection band is defined by adopting the
criterion used in electronics to define the pass band. With this
definition, the width of the reflection band is the width of the in-
terval [k1H, k2H] so that the value of the reflection coefficient cor-

responding to k1H and k2H is equal to , where Rmax de-

notes the maximum of the reflection coefficient.

2  Interaction of wave-current-plate
In this part, we present the calculation of the reflection coeffi-

cient of a regular wave in the presence of a uniform current inter-
acting with a fixed horizontal plate completely immersed in a
channel. This study was conducted as part of the linearized po-
tential theory using the evanescent modes model. The studied
regular wave is of low wave steepness, and the surface tension is
negligible. A monochromatic wave is emitted upstream; down-
stream, the wave does not undergo any reflection.

2.1  Velocity potential
The horizontal plate is totally immersed in a channel. The

plate is e in thickness and 2l in length, covering the entire width
of the channel. The domain of study is reported as a Cartesian co-
ordinate system (O, x, y), in which the axis (Oy) is directed vertic-
ally upward, the axis (Ox) coincides with the position of the free
surface at rest, and origin O coincides with the center of the plate
orthogonal projection on the axis (Ox). The geometry of the do-
main of study leads us to define four subdomains, as shown in
Fig. 1.

Ác (x ; y; t) = Ux

Áh (x ; y; t) = ' (x ; y) ei!t

Seeking the potential in the form of a superposition of the po-
tentials associated with the current  and with a

monochromatic regular wave , (Rey et

al., 2003; Errifaiy et al., 2016) obtained the total potential as fol-
lows:

1 p 3In subdomains Dp, :

Áp (x ; y; t) =Ux +
h

A peik¡p x cosh
¡

k¡p (y+

H p)) + B peik+p x cosh
¡

k+p (y + H p)
¢
+

NX
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A pnekpnx cos (kpn (y + H p))+

B pne¡kpnx cos (kpn (y + H p))
i

ei!t : (1) 
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¢

cosh
¡

k¡1 H
¢

k§p

In this equation, H1 and H2 are both equal to the water depth
in the channel (H1=H2=H), H3 is equal to the plate immersion
(H3=h), ω is the wave pulsation, N denotes the number of evanes-
cent modes, A1 n  and B2 n  are all  zero, A1  is given by 

 (where ai is the amplitude of the wave

that propagates at the free surface and g is the acceleration of
gravity), and the constants  and kpn are the roots of the follow-

ing equations:

¡
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(i!+U(kpn))
2 = g (kpn)£ tan ((kpn)H p) : (3) 
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Fig. 1.   Descriptive schemas of the wave propagation with a submerged plate in the presence of a current.
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¹n =
n

H ¡ h ¡ e
; (5) 

where e is the plate thickness.
fB 1;B 1n;A 3;B 3;A 3n;B 3n;A 4;B 4;A 4n;B 4n;A 2

and A 2n for 1 n Ng
All constants 

 that are present in Eqs (1) and (4) are un-
known.

The roots of Eq. (2) are the wavenumbers of the propagating
modes. The roots of Eq. (3) correspond to evanescent modes. In
the absence of a current (U=0), these roots are pure real.
However, in the presence of a current, it is easy to verify, first, that
this equation has no pure real roots and, second, that the pure
imaginary roots are those corresponding to Eq. (2). Therefore, to
establish this model, it is necessary to search for roots (kpn) with a
nonzero real part and a nonzero imaginary part as well.

Equation (1) shows that the velocity potential corresponding
to subdomains D1 and D3 is the sum of the uniform current, two
modes propagating in opposite directions and a series of evanes-
cent modes. In subdomain D2, the velocity potential is the sum of
the uniform current, a mode propagating downstream and a
series of evanescent modes. Equation 4 shows that the velocity
potential corresponding to subdomain D4 is the sum of the uni-
form current, an oscillatory current and a series of evanescent
modes.

2.2  Reflection coefficient calculation
The reflection coefficient of the regular wave that propagates

at the free surface is given by

R =

¡
!+Uk+1

¢¡
!¡Uk¡1

¢ £ cosh
¡

k+1 H
¢

cosh
¡

k¡1 H
¢ £ B 1

A 1
: (6) 

fB 1;B 1n;A 3;B 3;A 3n;B 3n;A 4;B 4;A 4n;

B 4n;A 2 and A 2n for 1 n Ng

To determine the reflection coefficient R, we must resolve a lin-
ear algebraic system of (6N+6) equations and (6N+6) unknowns,
which are the constants 

 that are present in Eqs (A1) and
(A4) (see Appendix).

This system is obtained by means of the matching conditions
between the subdomains that express the continuity of the velo-
city potential and of the horizontal velocity at the attack and trail-
ing edges of the plate (x=–l and x=l, respectively).

The elements of the matrix corresponding to this system de-
pend on the following: the relative depth kH (which expresses the
ratio of the water depth in the channel to the wavelength of the
incident wave in the absence of a current), the Froud number

U=
p

gH  and the geometrical parameters, namely, the plate im-

mersion ratio (h/H), the relative plate length (2l/h) and the relat-
ive plate thickness (e/h) (see Appendix). Accordingly, the reflec-
tion coefficient depends on the same parameters.

3  Effects of the geometrical parametrical parameters in the
absence of a current

3.1  Immersion ratio and relative plate length effect
During the interaction of a regular wave with a horizontal

plate immersed in the absence of a current, the effects of immer-
sion and plate length were experimentally and numerically (fi-
nite element method) studied by Patarapanich and Cheong
(1989) and experimentally studied by Brossard et al. (2009). We
compared the values of the reflection coefficient calculated using
the present model with the results of Patarapanich (Fig. 2) and
with those of Brossard et al. (2009) (Fig. 3). In these figures, the
coefficient of reflection is represented as a function of the ratio of
the plate length (2l) to the wavelength (L) of the wave propagat-
ing above the plate.

The results of the model fit well with the results calculated via
the finite element method by Patarapanich (Fig. 2) and are close
to the experimental results of Patarapanich (Fig. 2) and those of
Brossard (Fig. 3).

The curves in Figs 2 and 3 show the following:
(1) The reflection coefficient increases as the immersion ratio

decreases.
(2) At a constant immersion ratio, the reflection coefficient in-

creases to the maximum and then decreases.

3.2  Plate thickness effect
In the available literature, most studies assumed the plate

thickness to be zero for simplicity. The plate thickness was con-
sidered only in a few studies.

Liu and Iskandarani (1991) studied the interaction of a linear
and nonlinear wave with a thick plate.

Liu et al. (2009) by studying the reflection coefficient evolu-
tion as function of the plate length to wavelength ratio during the
interaction of water waves with twin plates, showed that the re-
flection coefficient decreases with increasing plate thickness.

Zheng et al., (2007b) studied the interaction between water
waves and a rectangular structure for an oblique incidence. In
their study, the representation of the reflection coefficient as a
function of kH showed that the reflection coefficient increases
with the increase of the structure thickness.

experimental data of Patarapanich
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Fig. 2.   Reflection coefficient as a function of 2l/L for a relative depth kH=1.256 and a plate immersion ratio h/H=0.3.
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To study the effect of the plate thickness on the reflection
coefficient during the interaction of a regular wave with a thick
plate, we first compared the results calculated using this model
with those of Liu and Iskandarani (1991). The results presented
in Fig. 4 are in good agreement with those of Philip L-F Liu and
Iskandarani (1991). Second, we calculated the reflection coeffi-
cient of a regular wave, in normal incidence, during its interac-
tion with a rectangular structure. In keeping the settings of the
configuration taken by Zheng et al. (2007b) (except for the incid-
ence angle), we represent the reflection coefficient versus kH in
Fig. 5. The curves obtained are similar to those of Zheng et al.
(2007b).

4  Effect of the geometrical parameters in the presence of a
current

As shown above, during the regular wave–current–plate inter-
action, in addition to the current velocity, the reflection coeffi-
cient of a regular wave also depends on the geometrical paramet-
ers of the examined problem. These geometrical parameters are
the relative depth of water in the channel, the relative thickness
of the plate, its immersion ratio and its relative length. The
present model is used to study the effect of each of these para-
meters on the reflection coefficient. This study was conducted as
part of the linearized potential flow theory using the evanescent
modes model. To take account of the evanescent modes in the
presence of a current, the dispersion equation was solved by
seeking complex roots that are neither pure real nor pure imagin-
ary. In this model, the number of evanescent modes taken into
account is N=30 (Errifaiy et al., 2016).

4.1  Plate thickness effect
To study the effect of the plate thickness, the reflection coeffi-

cient is calculated using this model with a thin plate and a thick
plate in the presence of a current. First, the results were com-
pared with those obtained experimentally by Rey and Touboul
(2011) and with the numerical results of Lin et al. (2014). After-
ward, the model was used to predict the effect of the relative plate
thickness (e/h) on the reflection coefficient for different values of
the plate immersion ratio (h/H).

4.1.1  Comparison with the data of Rey and Touboul (2011)
Rey and Touboul (2011) experimentally investigated the re-

flection of a regular wave in the presence of a current of velocity
(U=0.3 m/s), interacting with a plate of thickness e=0.1 m im-
mersed in a flat horizontal channel with a water depth H=3 m.
The plate is immersed at depth h=0.5 m below the level of the
free surface.

We compare our results with those of Rey and Touboul (2011)
in Fig. 6. The calculations of the reflection coefficient by the
present model were performed, first, by keeping the value of the
thickness taken by these authors and, second, by supposing that
the plate is without thickness.

In Fig. 6, we represent the dependence on the period of the
values of the reflection coefficient measured experimentally by
Rey and Touboul (2011) and calculated analytically by the
present model. The analytical calculations were made in the
presence of a current velocity (U=0.3 m/s), for a thin plate (e=0 m)
and a plate of thickness (e=0.1 m).

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

2 l/L

R
ef

le
ct

io
n
 c

o
ef

fi
ci

en
t

present model h/H=0.35

present model h/H=0.5

Brossard  h/H=0.35

Brossard  h/H=0.5

 

Fig. 3.   Reflection coefficient as a function of 2l/L for a plate length 2l=25 cm and two values of the plate immersion ratio h/H=0.5, 0.35.
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Fig. 4.   Reflection coefficient as a function of kl for l/h=2, relative
plate thickness e/h=0.5 and a plate immersion ratio h/H=0.25.
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2l=h = 6
Fig. 5.   Reflection coefficient as a function of kH for a plate im-
mersion ratio h/H=0.2, a relative plate length , and dif-
ferent values of the relative plate thickness e/h=0.1, 0.2, 0.4.
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The curves in Fig. 6 show the following:
(1) The difference between the analytical results calculated by

the present model for e=0 m and e=0.1 m is weak.
(2) There is good agreement between the results of Rey and

those of the model, especially for the long periods (the long
waves). The shift in the range of the short periods (short
wavelengths) may be explained by the fact that the analytical
model does not take into account the vortex emission by the plate
(Lebon et al., 2016) or the surface tension, whose effect increases
when the wavelength decreases.

4.1.2  Comparison with the computation of Lin et al. (2014)

U=Cg0 =

Lin et al. (2014) performed a numerical study (BEM) of the
same problem with a plate of thickness e=0.01 m immersed at
h=0.1  m and h=0.07 m with a  water  depth H=0.2  m for

0.12 (ratio of the current velocity relative to the Cg0 group
velocity calculated in the absence of a current).

We compare our results with those of Lin et al. (2014) in Fig. 7.
The calculations of the reflection coefficient by the present mod-
el were first performed by keeping the value of the thickness
taken by these authors and then by supposing that the plate is
without thickness.

U=Cg0 = 0:12
In Fig. 7, we represent the dependence on the period of the

values of the reflection coefficient for  (ratio of the
current velocity relative to the Cg0 group velocity calculated in the
absence of a current). The results calculated by this model with a
thin plate (e=0 m) and a thick plate (e=0.01 m) are compared with
those calculated numerically by Lin et al. (2014).

The curves in Fig. 7 show that there is good agreement
between the result calculated by this model with plate thick-
nesses e=0 m and e=0.01 m and those calculated numerically by
Lin et al. (2014).

4.1.3  Model prediction
The results in Figs 6 and 7 show the following:
(1) The results calculated by the present model are in agree-

ment with the experimental values of Rey and Touboul (2011)
(Fig. 6) and the values of Lin et al. (2014) (Fig. 7).

(2) The difference between the results calculated by this mod-
el with a plate without thickness and those calculated taking into
account the thickness of the plate is weak.

In the following, we used the model to study the variation of
the reflection coefficient for different thicknesses of the plate at
different immersions.

U=
p

gH = 0:045

Figures 8a–d represent the values of the reflection coefficient

as a function of kH (relative depth of the incident wave in the ab-

sence of a current) for different values of the relative plate thick-

ness (e/h), different values of the plate immersion ratio (h/H) and

Froud number . It shows that reflection coeffi-

cient decreases when the relative plate thickness (e/h) increases.

In Table 1, we present the relative difference in the maximum

of the reflection coefficient (M–M0)/M0, where M0 is the reflec-

tion coefficient maximum for the plate without thickness (e=0 m).

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
0

0.2

0.4

0.6

0.8

Period/s

R
ef

le
ct

io
n
 c

o
ef

fi
ci

en
t

present model U=0.3 m/s, e=0.1 m

present model U=0.3 m/s, e=0 m

experimental data of Rey and Touboul (2011)

 

Fig. 6.     Reflection coefficient as a function of the period for plate thicknesses e=0.1 m and e=0 m, plate length 2l=1.53 m, plate
immersion h=0.5 m, water depth H=3 m and current velocity U=0.3 m/s.
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Fig. 7.   Reflection coefficient as a function of period for a plate
length 2l=0.25 m, water depth H=0.2 m, relative current velocity
U/Cg0 = 0.12 (Cg0 is the group velocity at T=0.75 s) and plate thick-
nesses e=0 m and e=0.01 m. In Fig. 7a, the plate immersion h=
0.1 m, and in Fig. 7b, h=0.07 m.

14 Naasse Smail et al. Acta Oceanol. Sin., 2019, Vol. 38, No. 5, P. 10–20  



At the same immersion, the relative difference in the maximum
of the reflection coefficient (M–M0)/M0 increases when the relat-
ive thickness increases. For the same relative thickness, the relat-
ive difference in the maximum of the reflection coefficient
(M–M0)/M0 decreases when the immersion ratio decreases. For
relative thickness (e/h) =0.1, the relative difference in the maxim-
um of the reflection coefficient (M–M0)/M0 is approximately 7%

for immersion 0.5 and does not exceed 3% for other immersions.
Consequently, we can conclude that the relative plate thick-

ness effect on the reflection coefficient decreases when the im-
mersion ratio decreases.

4.2  Effect of plate immersion
In this section, we study the effect of the plate immersion ra-

tio on the reflection coefficient during the regular wave–
current–thin plate interaction. For this study, the reflection coef-
ficient calculated by the present model is represented as a func-
tion of kH (relative depth of the incident wave in the absence of a
current) for different values of the plate immersion and different
values of the Froude number.

R max=
p

2

We study the effect on the maximum of the reflection coeffi-
cient and on the reflection bandwidth. The reflection band is
defined by adopting the criterion used in electronics to define the
pass band. With this definition, the width of the reflection band is
the width of the interval [k1H, k2H] so that the value of the reflec-
tion coefficient corresponding to k1H  and k2H  is equal to

, where Rmax denotes the maximum of the reflection

coefficient.

U=
p

gH

U=
p

gH

To study the effect of the plate immersion ratio, we represent
the variations of the reflection coefficient as a function of the rel-
ative depth kH  for different immersion ratios (h/H=0.25,
h/H=0.50, h/H=0.75) (Fig. 9). The analytical calculations were
performed using this theoretical model for a relative plate length
(2l/h)=3. Three cases are considered: in the absence of a current

(Fig. 9a) and for two values of the Froud number =0.045

(Fig. 9b) and =0.061 (Fig. 9c). In Table 2, we presented

the reflection bandwidth and the relative difference of the max-
imum of the reflection coefficient (M–M0)/M0, where M0 is the re-
flection coefficient maximum in the absence of a current.

The curves in Figs 9a–c and the results presented in Table 2
show that:

(1) The reflection coefficient maximum and the width of the
reflection band decrease with the increase of the plate immer-
sion ratio.

(2) When the plate immersion ratio increases, the width of the
reflection band is shifted to higher values of kH (short wave-
length).

(3) When the Froud number increases, the reflection coeffi-
cient maximum also increases, the reflection band is not shifted
and its width is practically unchanged.

Thus, we can conclude that the nearer the plate is to the free
surface (low immersion), the more important is the effect of cur-
rent and the shift of the efficiency of the plate toward the large
values of kH.

4.3  Effect of the relative plate length

U=
p

gH = 0

U=
p

gH = 0:045 U=
p

gH = 0:061

To consider the impact of the length of the plate on the reflec-
tion coefficient in the presence of a current, we represent the
variations of the reflection coefficient as a function of kH (relat-
ive depth of the incident wave in the absence of a current) for dif-
ferent values of the relative length of the plate (2l/h=3, 3.5 and 4)
and for different values of the Froud number. The three cases

considered are  (in the absence of a current) (Fig. 10a),

 (Fig. 10b) and  (Fig. 10c). In

Table 3, we present the reflection bandwidth and the relative dif-
ference of the maximum reflection coefficient (M–M0)/M0, where
M0 is the reflection coefficient maximum in the absence of a cur-
rent.

The curves in Figs 10a–c and the results presented in Table 3
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Fig. 8.     Reflection coefficient as a function of kH  for a relative
plate length 2l/h=3, Froud number =0.045, and different

values of relative plate thickness e/h=0, 0.1, 0.2, 0.3 and 0.6. a. Im-
mersion ratio h/H=0.5, b. h/H=0.35, c. h/H=0.25, and d. h/H=0.15.
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show that:
(1) The reflection coefficient maximum increases very slightly

with the increase of the relative plate length.
(2) When the relative plate length increases, the reflection

band is shifted to low values of kH (high wavelength) and the
width of this band decreases.

(3) When the Froud number increases, the reflection coeffi-
cient maximum increases and the reflection band is not shifted
and is of practically unchanged width.

We concluded that the effect of the relative length of the plate
on the reflection coefficient is accentuated by the current velo-
city and that this accentuation decreases with the increase of the
relative plate length.

5  Conclusions
In this paper, we studied the influence of the geometrical

parameters of a plate during the regular wave–current–plate in-
teraction. These parameters are the relative depth of water in the

U=
p

gHTable 1.   Relative difference in the maximum value of the reflection coefficient for Froud number = 0.045

e/h
h/H=0.5 h/H=0.35 h/H=0.25 h/H=0.15
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M ¡M0
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Fig. 9.   Reflection coefficient as a function of kH for a thin plate (e=0 m), a relative plate length 2l/h=3, and different values of the plate
immersion ratio (h/H=0.25, 0.50 and 0.75). a. Froud number = 0, b. = 0.045, and c. = 0.061.
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channel, the relative thickness of the plate, its immersion ratio
and its relative length. We studied the effect on the maximum
values of the reflection coefficient and the reflection band.

This study was conducted as part of the linearized potential
flow theory using the evanescent modes model. To take account
of the evanescent modes in the presence of a current, the disper-

sion equation was solved by seeking complex solutions that are
neither pure real nor pure imaginary. The number of evanescent
modes taken into account was N=30. This investigation revealed
that:

(1) Plate thickness influence. The relative plate thickness ef-
fect on the reflection coefficient decreases when the immersion

U=
p

gH
Table 2.   Relative difference in the maximum value of the reflection coefficient and the reflection bandwidth for different values of the
immersion ratio (h/H=0.25, 0.50 and 0.75) and different values of the Froud number ( =0, 0.045 and 0.061)

h/H
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gH

= 0
Up
gH

= 0:045
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gH

= 0:061

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75¯̄̄̄
M ¡M0

M0

¯̄̄̄
23.7% 12% 10% 43.5% 24.8% 17.5%
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Fig. 10.   Reflection coefficient as a function of kH for a thin plate, plate immersion ratio h/H=0.50 and different values of the relative
plate length 2l/h=3.0, 3.5 and 4.0. a. Froud number = 0, b. = 0.045, and c. =0.061.
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ratio decreases.
(2) Immersion ratio influence. The reflection coefficient max-

imum and the width of the reflection band decrease with the in-
crease of the plate immersion ratio. When the plate immersion
ratio increases, the width of the reflection band is shifted to high-
er values of kH (short wavelength). When the Froud number in-
creases, the reflection coefficient maximum also increases, and
the reflection band is not shifted and is of practically unchanged
width.

(3) Plate length influence. The reflection coefficient maxim-
um increases very slightly with the increase of the relative plate
length. When the relative plate length increases, the reflection
band is shifted to low values of kH (high wavelength), and the
width of this band decreases. When the Froud number increases,
the reflection coefficient maximum increases as well, and the re-
flection band is not shifted and is of practically unchanged width.
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Appendix:
　　The continuity of the velocity potential at the edge of attack (x=–l):

Á1 (¡l; y) = Á3 (¡l; y) ¡h y 0; Á1 (¡l; y) = Á4 (¡l; y) ¡H y ¡ h: (A1) 

cos (k3n (y + h)) cos (¹n (y + H))Multiplying these two equations respectively by  and  and then integrating, we obtain:

0Z
¡h

Á1 (¡l; y) cos (k3n (y + h))dy =

0Z
¡h

Á3 (¡l; y) cos (k3n (y + h))dy (1 n N) ;

¡hZ
¡H

Á1 (¡l; y) cos (¹n (y + H))dy =

¡hZ
¡H

Á4 (¡l; y) cos (¹n (y + H))dy (1 n N) : (A2) 

cos (k3n (y + h))　　This gives 2N equations (2 equations for each value of n). Two other equations are obtained by replacing  by cosh
(k3 (y + h)) and cos (μn (y + H)) by 1 (one) in the previous process. Hence, the number of equations is 2N+2.

　　The continuity of the horizontal velocity at the edge of attack (x=–l):

Á1 (¡l; y)
x

=
Á3 (¡l; y)

x
¡h y 0;

Á1 (¡l; y)
x

=
Á4 (¡l; y)

x
¡H y ¡ h: (A3) 

cos (k1n (y + H))By multiplying these two equations by  and then integrating and summing, we obtain:

0Z
¡H

Á1 (¡l; y)
x

cos (k1n (y + H))dy =

0Z
¡h

Á3 (¡l; y)
x

cos (k1n (y + H))dy+

¡hZ
¡H

Á4 (¡l; y)
x

cos (k1n (y + H))dy (1 n N) : (A4) 

cos (k1n (y + H)) cosh
¡

k+1 (y + H)
¢

Replacing  by  in the previous process, we obtain another equation. In addition, by using the

matching conditions between the subdomains at the edge of attack, we obtain 3N+3 equations.

Á1 Á2 k+1 k¡1 ¡k1n ¡k1n k¡3 k+3 k3n ¡k3n　　Using a similar process at the edge of trailing (x=l), by replacing  by ,  by ,  by ,  by  and  by , we

obtain 3N+3 other equations.

　　Therefore, using the continuity of the velocity potential and of the horizontal velocity at the attack and trailing edges of the plate,
we obtain the following system (Eqs (A5)–(A16)):

0Z
¡h

Á1 (¡l; y) cos (k3n (y + h))dy =

0Z
¡h

Á3 (¡l; y) cos (k3n (y + h))dy (1 n N) ; (A5) 

0Z
¡h

Á1 (¡l; y) cosh
¡

k¡3 (y + h)
¢

dy =

0Z
¡h

Á3 (¡l; y) cosh
¡

k¡3 (y + h)
¢

dy; (A6) 

¡hZ
¡H

Á1 (¡l; y) cos (¹n (y + H))dy =

¡hZ
¡H

Á4 (¡l; y) cos (¹n (y + H))dy (1 n N) ; (A7) 

¡hZ
¡H

Á1 (¡l; y)dy =

¡hZ
¡H

Á4 (¡l; y)dy; (A8) 

0Z
¡H

Á1 (¡l; y)
x

cos (k1n (y + H))dy =

0Z
¡h

Á3 (¡l; y)
x

cos (k1n (y + H))dy+

¡hZ
¡H

Á4 (¡l; y)
x

cos (k1n (y + H))dy (1 n N) ; (A9) 
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0Z
¡H

Á1 (¡l; y)
x

cosh
¡

k+1 (y + H)
¢

dy =

0Z
¡h

Á3 (¡l; y)
x

cosh
¡

k+1 (y + H)
¢

dy+

¡hZ
¡H

Á4 (¡l; y)
x

cosh
¡

k+1 (y + H)
¢

dy; (A10) 

0Z
¡h

Á2 (l; y) cos (k3n (y + h))dy =

0Z
¡h

Á3 (l; y) cos (k3n (y + h))dy (1 n N) ; (A11) 

0Z
¡h

Á2 (l; y) cosh
¡

k+3 (y + h)
¢

dy =

0Z
¡h

Á3 (l; y) cosh
¡

k+3 (y + h)
¢

dy; (A12) 

¡hZ
¡H

Á2 (l; y) cos (¹n (y + H))dy =

¡hZ
¡H

Á4 (l; y) cos (¹n (y + H))dy (1 n N) ; (A13) 

¡hZ
¡H

Á2 (l; y)dy =

¡hZ
¡H

Á4 (l; y)dy; (A14) 

0Z
¡H

Á2 (l; y)
x

cos (k1n (y + H))dy =

0Z
¡h

Á3 (l; y)
x

cos (k1n (y + H))dy+

¡hZ
¡H

Á4 (l; y)
x

cos (k1n (y + H))dy (1 n N) ; (A15) 

0Z
¡H

Á2 (l; y)
x

cosh
¡

k¡1 (y + H)
¢

dy =

0Z
¡h

Á3 (l; y)
x

cosh
¡

k¡1 (y + H)
¢

dy+

¡hZ
¡H

Á4 (l; y)
x

cosh
¡

k¡1 (y + H)
¢

dy: (A16) 

Áp

=
p

gH

U=
p

gH

The expressions of potentials Eq. (A1) and Eq. (A4) show that the functions  are linear with respect to the constants {B1, B1n, A3, B3,
A3n, B3n, A4, B4, A4n, B4n, A2 and A2n for 1≤n≤N}. After integration, Eqs (A5) to (A16) depend on the following constants: the
geometrical parameters h/H, 2l/h and e/h; the relative depth kH (where k is the wavenumber of the incident wave in the absence of a

current); and the Froud number U . As a result, Eqs (A5)–(A16) are also linear with respect to the constants {B1, B1n, A3, B3, A3n,

B3n, A4, B4, A4n, B4n, A2 and A2n for 1≤n≤N}. These equations therefore constitute a linear algebraic system of 6N+6 equations and
6N+6 unknowns, which are the constants {B1, B1n, A3, B3, A3n, B3n, A4, B4, A4n, B4n, A2 and A2n for 1≤n≤N}. The linearity of this system
results from the linearity of the velocity potential. The elements of the matrix corresponding to this system depend on the following:
geometrical parameters h/H, 2l/h and e/h; the relative depth kH (where k is the wavenumber of the incident wave in the absence of a

current); and the Froud number .
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