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Abstract

Due to the elevated atmospheric carbon dioxide, ocean acidification (OA) has recently emerged as a research
theme in marine biology due to an expected deleterious effect of altered seawater chemistry on calcification. A
system simulating future OA scenario is crucial for OA-related studies. Here, we designed an OA-simulated
system (OASys) with three solenoid-controlled CO2 gas channels. The OASys can adjust the pH of the seawater by
bubbling CO2 gas into seawaters via feedback systems. The OASys is very simple in structure with an integrated
design and is new-user friendly with the instruction. Moreover, the OASys can monitor and record real-time pH
values and can maintain pH levels within 0.02 pH unit. In a 15-d experiment, the OASys was applied to simulate
OA in which the expected target pH values were 8.00, 7.80 and 7.60 to study the calcifying response of Galaxea
fascicularis. The results showed daily mean seawater pH values held at pH 8.00±0.01, 7.80±0.01 and 7.61±0.01 over
15 d. Correspondingly, the coral calcification of G. fascicularis gradually decreased with reduced pH.
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1  Introduction
Ocean acidification (OA) is the progressive decline in seawa-

ter pH due to oceanic uptake of anthropogenic CO2 (Kleypas et
al., 1999). The projected 0.3–0.4 pH drop by 2100 will result in a
50% decrease in the carbonate ion concentration and a 3–fold in-
crease in hydrogen ions. This modifies the calcium carbonate
(CaCO3) saturation state of surface waters (Orr et al., 2005). OA is
attracting increasing attention especially because it poses a
threat to calcium-based marine organisms. OA has recently
emerged as a research theme in marine biology. The response of
calcifying marine organisms (i.e., hermatypic corals, coralline al-
gae, mollusks) to OA in terms of their physiological, molecular
and community response is a research hotspot (Gattuso et al.,
1999; Buddemeier et al., 2008; Abbasi and Abbasi, 2011).

One important research topic is the effects of OA or varied
carbonate chemistry of seawater to calcifying marine organisms
under controlled laboratory conditions (Hoegh-Guldberg et al.,
2007; Anthony et al., 2008; Jokiel et al., 2008; Hofmann et al.,
2010; Edmunds, 2011; Comeau et al., 2013a, 2014a; Huang et al.,
2014). Studies examining the effects of ocean acidification on
marine organisms are usually done via perturbation experi-
ments: organisms are exposed to acidified seawater and the
changes in growth or calcification are monitored over hours to
weeks (Doney et al., 2009). Recently, scientists have studied the
molecular response of calcifying organisms to OA (Hillhouse and

Grammatopoulos, 2006; Carreiro-Silva et al., 2014). These stud-
ies reveal the physiological plasticity of calcifying organisms un-
der OA, which allows them to endure or compensate for the var-
ied carbonate chemistry of seawater (Hillhouse and Grammato-
poulos, 2006; Fabry et al., 2008; Hofmann et al., 2008, 2010).

One of key elements in OA-related physiological studies is
that the systems simulate future OA scenarios. Due to technical
limitations, however, most of OA experiments in the past were
conducted via the addition of HCl, NaHCO3 or NaOH (Marubini
and Atkinson, 1999; Langdon et al., 2000; Langdon and Atkinson,
2005; Marubini et al., 2008; Andersson et al., 2009). For example,
more than 70% of OA studies on hermatypic corals publicized be-
fore 2011 used diluted HCl, NaHCO3 or NaOH to change the pH
and carbonate chemistry of seawater (Erez et al., 2011). Strictly
speaking, there is a different scenario of OA. For example, the ad-
dition of HCl simultaneously reduces the pH, HCO3

– and CO3
2–,

but OA is caused by oceanic uptake of anthropogenic CO2 that
lowers pH and CO3

2–, but increases HCO3
–. Therefore, an OA

model was created by bubbling CO2 into experimental seawaters
in OA-related studies in recent years (Anthony et al., 2008; Ed-
munds, 2011; Comeau et al., 2014a).

In this study, an OA-simulated system (OASys) was designed
with three solenoid-controlled CO2 gas channels. The OASys ad-
justs the pH of the seawater by bubbling CO2 gas into seawater
via feedback systems. The pH controller is adjusted using a  
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solenoid valve that open when the pH increases 0.02 unit above
the desired level. The OASys prototype monitors and records pH
in real-time via table computer. To test the effectiveness of the
OASys in coral physiological studies, a 15-d experiment was car-
ried out to study the calcification effect of OA to a scleractinian
coral Galaxea fascicularis. The OASys was applied to simulate the
scenarios of OA in which the expected target pH is 8.00, 7.80 and
7.60.

2  Materials and procedures

2.1  System schematic and structure
A schematic of the simulation is shown in Fig. 1. It is com-

posed of a pH intelligent feedback systems (IFS) and solenoid-
controlled CO2 gas regulation system (SCGRA) regulated by IFS.
IFS features a pH controller that is connected with a pH probe
immersed in experimental seawater, solenoid valve, indicator
light and both power adaptors. They supply 24 V power for the
solenoid valve and 220 V power for the pH controller, respect-
ively. The SCGRA contains a gas tube, CO2 gas bottle, pressure
valve, control valve and gas diffuser. The OASys adjusted the pH
of the seawater by bubbling CO2 gas into seawater via the solen-
oid valve. The pH controller is adjusted using a solenoid valve
that opened when the pH increases 0.02 unit above the desired
level. Pure CO2 is injected from the compressed CO2 tanks via
this solenoid valve.

2.2  Description of OASys prototype with three gas pathway
According to OASys schematic, an OASys prototype with

three solenoid-controlled CO2 gas channels was designed and
created to simulate OA. The structural diagram and resulting
OASys prototype are shown in Fig. 2 and Fig. 3. A custom solen-
oid valve made from stainless steel was used to avoid possible
metal contamination seawater via the gas tube (i.e., most of
solenoidvalves is made of Cu that is lethal to marine organisms).
This prolongs the life of the solenoid valve. Three paralleled pH
controllers with RS–485 were connected with a table computer

with USB interface that control and record the pH of the seawa-
ter in the tank. We programmed the procedure to transmit data
from three paralleled pH controllers to table computer. A monit-
or and control generated system (MCGS) for the OASys proto-
type was programmed. This is a controlling software, that shows
the real-time variation of pH in the software interface, which col-
lects data when the OASys prototype is running (Fig. 3). The data
can be exported via USB interface after the experiments end.

2.3  Stability test of OASys prototype
Three glass tanks with fresh seawater were prepared to test

the stability of OASys prototype. Seawater was made by mixing
the deionized water and reef crystal (Aquarium System, French)
to a salinity of 33. Three targeted pH (8.00, 7.80 and 7.60) were set
in the OASys prototype. The MCGS software saves data every 5
min. The OASys prototype continuously ran for 6 d. The pH
probe of the prototype was calibrated before the test begun. The
pH buffer 4.01, 7.00 and 9.18 were used, and were held precisely
to ±0.02 units. pH values of seawater in three tanks were meas-
ured for 2 d (F5, Mettler Toledo) to compare the difference
between the values measured by F5 and monitored by the OASys
prototype. The pH probe of the OASys prototype was calibrated 4
d after the OASys prototype run.

2.4  The application of OASys in coral physiological studies
To test the effectiveness of the OASys in coral physiological

studies, a 15-d experiment was carried out to study the calcifica-
tion effect of OA on a scleractinia coral G. fascicularis. Experi-
ments were performed at the Laboratory of Coral Conservation,
Xiamen, where colonies of G. fascicularis were sampled from
Houhai coastal waters (18°16′41.77″N, 109°44′0.01″E), Sanya City,
Hainan and cultivated in a recycling aquaria system based on the
Berlin System featuring ample live rock.

The parent colonies of each coral were divided into at least
fifty small fragments (3–4 cm in length) of similar size using pli-
ers. All of the nubbins were scaled using the buoyant weight
method prior to the experiment (Davies, 1989), and choose
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Fig. 1.   The schematic of the experimental system designed to simulate ocean acidification.
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thirty-six nubbins with similar growth rates to minimize coral
growth difference.

Treatment was created in three 50 L glass tanks (L×W×H:
30 cm×30 cm×50 cm) indoors with artificial illuminating. The
tanks were divided into two parts by black acrylic plate with a
comb separator. The back part was equipped with a water com-
pensator and the pump (Rio 400, 250 L/h). The water compensat-
or can supply the evaporated freshwater, and the water pump in-
troduces the seawater into the front part of tanks and causes wa-
ter flow. Seawater was made by mixing deionized water and reef
crystal with a salinity of 33. Three OA treatments (8.0, 7.8 and 7.6)
were created by bubbling CO2 diffuser into the tanks.

When the OASys prototype starts, seawater will be acidified to
our set values by bubbling CO2 diffuser into the tanks. After the
pH values of tanks stabilized for 24 h, G. fascicularis fragments
were placed in the tanks. The MCGS software saves data every
5 min. There are 12 randomly chosen G. fascicularis fragments in
each tank (Fig. 4). The experiments last for 15 d. The calcification
rates of two corals were determined as differences in buoyant
weight (underwater) between the time interval (Davies, 1989).

Seawater chemistry in the tanks was sampled in 200 mL
volumes with a two-drop saturated HgCl2 solution daily. Total al-
kalinity (TA) used potentiometric titration according to standard
operation procedure SOP 3 b (Dickson et al., 2007). TA certified
reference materials (CRMs) provided by A. G. Dickson (SIO, UC-
SD) were used for calibration and accuracy assessment. The ti-
trant (0.1 mol/L HCl) was standardized using the CRM with
±0.1% precision.

The calcification rates of hermatypic coral G. fascicularis
among three pH treatments were compared by HSD test of One-
Way ANOVA. The significance level was p<0.05.

3  Results

3.1  Stability test of OASys prototype
Figure 5 shows the real-time pH values of the seawater that

was continuously monitored by OASys prototype. The pH values
of the seawater for three test tanks were very stable with average
values of 7.59±0.01, 7.81±0.01 and 8.01±0.01, respectively. It is
highly consistent with our target values (7.60, 7.80 and 8.00, re-
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Fig. 2.   The structure diagram of OASys prototype with three gas pathways.
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spectively) in OASys prototype. The sharp slope in the figure
shown with the rectangle is due to CO2 gas continuously placed
into the tanks during OASys prototype calibration. Thus, the CO2

gas pathway must be turned off during the calibration.
To test the stability of OASys prototype, pH values of seawa-

ter in three tanks were measured with an F5 portable pH-meter
on March 6, March 9 and March 11 to compare the difference
between the values measured by pH meter and monitored by
OASys prototype. The results showed that there is a positive lin-
ear relationship between the real-time pH values measured by

 

Fig. 3.   OASys prototype and its MCGS software.

 

Fig. 4.   OASys prototype applied in physiological studies of scleractinia coral Galaxea fascicularis. Three pH values (8.00, 7.80 and
7.60, respectively) were set in OASys prototype.
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OASys prototype and those by pH-meter in fresh seawater
(y=0.996x–0.047, r2=0.997, n=9, p<0.001, Fig. 6a). Moreover, there

was no difference between pH values of seawater measured by
the F5 pH-meter before and after the calibration (March 9 vs.
March 11, Paired Samples t-test, t=–0.383, df=2, p=0.739, Fig. 6b).
This suggests that the pH values monitored by OASys prototype
are reliable and can be used in OA-related physiological studies if
the calibration is carried out every 3 d.

3.2  The application of OASys in coral physiological studies
The OASys prototype was applied to study the calcified effect

of OA on reef corals. As shown in Fig. 7a, pH values of the seawa-
ter for the three tanks were very stable during 15 d experiments
and were maintained at pH 7.60±0.02 for Tank 1, 7.81±0.01 for
Tank 2 and 8.01±0.01 for Tank 3, respectively, which are highly
consistent with the set target points (7.6 for Tank 1, 7.8 for Tank 2
and 8.0 for Tank 3). Extremely significant differences were found
for pH among three tanks (p<0.001).

The OASys prototype also recorded the variation of water
temperature during 15–d experiments from 21.80°C to 23.95°C for
Tank 1, from 21.71°C to 23.94°C for Tank 2, from 21.46°C to
23.69°C for Tank 3. A similar variation trend of the temperature
for the three tanks showed the obvious effects of ambient envir-
onment due to a lack of a chiller.

Although the mean calcification of G. fascicularis was higher
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Fig. 5.     The real-time pH values of the seawater continuously
monitored by OASys prototype over a 6-d experimental period.
Three pH values (8.00, 7.80 and 7.60, respectively) were set in
OASys prototype. The sharp slope in figure shown with the arrow
is because the CO2 gas pathway was held when the OASys proto-
type was calibrating.
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Fig. 6.   Comparison of real-time pH values measured by OASys prototype and by pH-meter in fresh seawater. The pH-meter was
calibrated before measuring the pH in the seawater. Paired Samples t-test showed no difference between pH values of seawater
measured by F5 pH-meter before and after the calibration (March 9 vs. March 11).
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Fig. 7.   The pH (a) and temperature (b) in three tanks acidified via bubbling CO2 gas that was regulated by an OASys prototype over a
16-d experimental period. Three pH values (8.0, 7.8 and 7.6, respectively) were set in the OASys prototype. The pH values and
temperature were recorded every day (144 data every day) and were averaged.
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at pH 8.0 than that at pH 7.8, no significantly statistical difference
was found (Fig. 8, p=0.174). With pH reduced down to 7.6, the
mean calcification of G. fascicularis at pH 7.6 was (0.082±0.050)%/d,
which is far lower than that at pH 8.0, indicating G. fascicularis is
strongly affected by reduced pH and elevated CO2.

4  Discussion

4.1  Comparison of OASys and other OA-simulated systems

Previous reports have described common OA-simulated sys-

tems in OA-related physiological studies via pCO2 generation sys-

tem (PGS) (Comeau et al., 2013b, 2014b; Dufault et al., 2013; Ed-

munds et al., 2013; Rivest and Hofmann, 2014), in which the

pCO2 treatments were established by bubbling CO2–enriched air
into the tanks. The CO2–enriched air was created with a solenoid-
controlled gas regulation system that received pure CO2 from a
gas cylinder and ambient air from an air pump. Mass-flow con-
trollers and a solenoid valve were used to blend the air and CO2

in a mixing chamber from which gas was drawn to measure pCO2

with a gas analyzer (Fig. 9). The chemistry of the seawater regu-
lated by PGS varied only slightly (Fangue et al., 2010), which is
very suitable for OA studies. However, as shown in Fig. 9, PGS
consist of many pieces of equipments and electronic compon-
ents, including CO2 gas cylinders, air pump/compressor, solen-
oid valves, mass-flow controllers, the chamber for blending air
and CO2, CO2 gas analyzer, the small devices making the dry air
without CO2 gas and particles, etc. It is very complex in structure,
and researchers have to spend a lot of time learning how to as-
semble PGS due to the lack of mature products on the markets
that can be used directly. It is bad for the development of OA
physiological studies. Moreover, the PGS makes tremendous
noise when running air compressors, which possibly interrupts
the physiological status of the experimental organisms, espe-
cially for fish (Codarin et al., 2009; Slabbekoorn et al., 2010).

The OASys is very simple with an integrated design (Figs 3
and 4), and the researchers do not need to learn how to as-
semble it but can easily use it via the instruction. Most import-
antly, the OASys is very accurate and can maintain pH levels
within 0.02 pH (Figs 5 and 7a). Moreover, the OASys can continu-
ously record the real-time pH variation, and it records the vari-
ation of pH at any time over a long-term experimental period. If
the OASys encounters problems, we can identify and diagnose
the issue. In fact, OA-simulated systems based on the same prin-
ciples as the OASys have been used in previous studies, and
called a pH-stat systems (Iguchi et al., 2012; Carreiro-Silva et al.,
2014), but real-time pH variation in experimental seawater was
not logged or publicized in these papers (Leclercq et al., 2002;
Iguchi et al., 2012; Carreiro-Silva et al., 2014), therefore we can-
not compare the advantages and disadvantages between the
OASys and the pH-stat systems. However, OASys was experi-
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Fig. 8.   The calcification of Galaxea fascicularis in acidified sea-
water (mean±SE) over the 16-d experimental period. The differ-
ence letter over the bar showed the difference among OA treat-
ments. The significance level is p<0.05.
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Fig. 9.   Diagram of the pCO2 generation system (originated from Fangue et al. (2010)).
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mentally confirmed to be accurate and stable (Figs 5, 6 and 7a).
The pH probes of the OASys need be calibrated every 5 d to guar-
antee the accuracies and stabilities (Fig. 6).

Barry et al. (2008) designed a gas controlled aquarium (GCA)
system used for laboratory studies of ocean acidification on mar-
ine animals (Barry et al., 2008). Membrane contactors connected
to the recirculation pumps and gas sources control gas concen-
trations in experimental tanks (Barry et al., 2008). Thus, this has a
similar operating principle as PGS. Control of CO2 is slightly less
accurate with variability of about 10% (Barry et al., 2008), which
is far lower than the OASys. McGraw et al. (2010) also developed
an automated 12–tank culture system using a spectrophotomet-
ric pH measurement system with a feedback system that can
maintain pH levels between 7.51 and 8.00 within 0.02 pH units at
15.1°C (McGraw et al., 2010). The system is close to the OASys in
accuracy, but it is meant for small indoor experiments, i.e., 150–mL
culture tank reported by McGraw et al. (2010). Thus, it is very
useful for a range of small marine organisms, including phyto-
plankton or invertebrate larvae (McGraw et al., 2010), but it is not
suitable for meso- or macrocosm with water bodies from 100 L to sev-
eral tons. OA studies conducted in mesocosm or macrocosm have
attracted more attention from scientists (Jokiel et al., 2008; Ander-
sson et al., 2009) because they build an environment similar to the
field for animals and the conclusions or findings originating from
these experiments are more convincing. Obviously, McGraw's syst-
ems are not fit for these studies. The OASys is more stable for lar-
ger body of water because of larger pH or CO2 buffering capacity
when bubbling CO2 gas into seawater. Therefore, it is an effective
tool to simulate OA environments in a mesocosm or macrocosm.

4.2  Effects of OA to the calcification of hermatypic coral Galaxea
fascicularis
Galaxea fascicularis is a common hard coral with thick colon-

ies in Indo-Pacific region (Zheng et al., 2013), which has been
previously used in OA-related studies, but focused on hetero-
trophy after long-time exposure to elevated CO2 (Smith et al.,
2016) and coral competition mechanism for space, i.e., by mes-
enterial filaments (Evensen et al., 2018), instead of calcification.
In this case, we concentrated on the variation of G. fascicularis
calcification rates under OA and showed that the reef coral
showed a decreased trend in mean calcification with reduced pH
(Fig. 8), in line with most previous studies (Langdon and Atkin-
son, 2005; Anthony et al., 2008; Jokiel et al., 2008; Albright and
Langdon, 2011; Chauvin et al., 2011; Ries, 2011; Dufault et al.,
2013; Comeau et al., 2014b; Huang et al., 2014; Zheng et al.,
2018), although only slight differences were found between at pH
8.1 and at pH 7.8.

This may be due to the diffusion limitation of net H+ trans-
port through the boundary layer caused by increasing [H+] in the
water column (Jokiel, 2011). Because coral calcification is dir-
ectly affected by the chemical composition in the calcification
fuild (CF) rather than ambient seawater, the evidence of skeletal
δ11B in other hermatypic corals that reflects the pH in the calcific-
ation fluid (pHCF) (McCulloch et al., 2012a, b; Tanaka et al.,
2015), suggests that G. fascicularis gradually decreased the calci-
fication with elevated CO2 is related to the possibilities that the
reef-building coral is insufficient to significantly up-regulate the
pHCF. Consequently, the ΩCF increases via exchange of H+ with
Ca2+ and decrease seawater pH.

McCulloch et al. (2012a) stated that up-regulation of pH is not
ubiquitous among calcifying organisms; those lacking this ability
are likely to undergo severe declines in calcification as CO2 levels
increase. Tanaka et al. (2015) estimated that the aragonite satura-
tion state of the ΩCF for Acropora digitifera is elevated by a factor

of 5–10 relative to ambient seawater in seawater pH of 8.1, 7.8
and 7.4 (Tanaka et al., 2015). Thus, reduced pH by bubbling CO2

into seawater from 8.25±0.02 to 7.56±0.04 has no effects on its
calcification (Takahashi and Kurihara, 2013). Strong tolerance to
OA were revealed in typical scleractinian corals Stylophora pistil-
lata and Porites spp. (McCulloch et al., 2012a), some species of
cold water corals (Rodolfo-Metalpa et al., 2010; McCulloch et al.,
2012b) using boron isotope systematics.
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