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Abstract

Water samples were collected in order to study the spatial variation of photosynthetic pigments and phyto-
plankton community composition in the Lembeh Strait (Indonesia) and the Kelantan River Estuary (Malaysia)
during July and August 2016, respectively. Phytoplankton photosynthetic pigments were detected using high
performance liquid chromatography combining with the CHEMTAX software to confirm the Chl a biomass and
community composition. The Chl a concentration was low at surface in the Lembeh Strait, which it was 0.580–
0.682 μg/L, with the average (0.620±0.039) μg/L. Nevertheless, the Chl a concentration fluctuated violently at
surface in the Kelantan River Estuary, in which the biomass was 0.299–3.988 μg/L, with the average (0.922±
0.992) μg/L. The biomass at bottom water was higher than at surface in the Kelantan River Estuary, in which the
Chl a concentration was 0.704–2.352 μg/L, with the average (1.493±0.571) μg/L. Chl b, zeaxanthin and fucoxanthin
were  three  most  abundant  pigments  in  the  Lembeh  Strait.  As  a  consequence,  phytoplankton  community
composition was different in the two study areas.  In the Lembeh Strait,  prasinophytes (26.48%±0.83%) and
Synechococcus (25.73%±4.13%) occupied ~50% of the Chl a biomass, followed by diatoms (20.49%±2.34%) and
haptophytes  T8 (15.13%±2.42%).  At  surface water  in the Kelantan River  Estuary,  diatoms (58.53%±18.44%)
dominated more than half  of  the phytoplankton biomass,  followed by Synechococcus  (27.27%±14.84%) and
prasinophytes (7.00%±4.39%). It showed the similar status at the bottom water in the Kelantan River Estuary,
where diatoms, Synechococcus and prasinophytes contributed 64.89%±15.29%, 16.23%±9.98% and 8.91%±2.62%,
respectively. The different phytoplankton community composition between the two regions implied that the
bottom up control affected the phytoplankton biomass in the Lembeh Strait where the oligotrophic water derived
from the West Pacific Ocean. The terrigenous nutrients supplied the diatoms growing, and pico-phytoplankton
was grazed through top down control in the Kelantan River Estuary.
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1  Introduction
The phytoplankton is the major primary producer which con-

tributes about half of the global primary production through no
more than 1% of the autotrophic standing stock (Falkowski, 2012;
Field et al., 1998). The standing biomass and dynamic variation
of phytoplankton was the essential question in both marine bio-
logy and biological oceanography studies. In addition, the com-
position of phytoplankton in natural condition was great vari-
able no matter at the population or community level (Fasham,
2003).

As far as the phytoplankton was concerned, the community

composition and succession responded to the nutrients, light
and other environmental factors. The carbon fixation capacity
varied among different phytoplankton groups, e.g., the diatoms
were the major contributor to the new production (Eppley and
Peterson, 1979; Goldman, 1993), and the pico-phytoplankton dis-
tributed mainly in the oligotrophic water (Chisholm et al., 1988;
Fogg, 1986). On the other hand, the ecological roles were also dif-
ferent in the food web or the microbial loop for different phyto-
plankton groups (Azam et al., 1983), and their efficiency in the
biological pump was different deservedly (Eppley and Peterson,
1979; Michaels and Silver, 1988). In the tropical South China Sea  
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(SCS) basin, where the nutrients are oligotrophic (Chen et al.,
2010; Chen, 2005; Chu and Fan, 2001; Wong et al., 2002), the
phytoplankton biomass and primary production are usually low.
The status is generally affected by both the bottom-up control in-
duced by permanent stratification of the water column (Wong et
al., 2007) and the top-down control through the food web (Sherr
and Sherr, 1994) or microbial loop (Azam et al., 1983).

As the ligament of West Pacific Ocean (WP) and the eastern
Indian Ocean, there must be the most complex current system in
the Southeast Asia, especially around the Indonesia Islands.
Wyrtki (1961) firstly defined the Indonesian Throughflow (ITF) as
the result of the gradients between higher sea level in the West
Pacific and lower sea level in the eastern Indian Ocean (Wyrtki,
1961). The currents velocity of ITF could be more than 15×106

m3/s (Gordon, 2005) with the heat flux 0.5–1.0 petawatts from the
Pacific into the Indian Ocean (Vranes et al., 2002). The temperat-
ure-salinity properties of the ITF are cooler and fresher water
mass which could penetrate through the island waterway into the
Indian Ocean (Gordon, 2005). The purpose of this study is to
make comparison between two typical coastal ecosystems in the
Southeast Asia which influenced by the oceanic or riverine water
respectively.

The hypothesis was that as the distribution and community
composition of phytoplankton in the SCS was spatial variable,
these are phytoplankton patches, especially in the coastal re-
gions with or less terrigenous nutrients. The scientific questions
had been processing from two portions in the present study, that
was (1) the distribution of phytoplankton in the coastal regions in
the Southeast Asia; (2) the limit factors for spatial variation of
major phytoplankton functional types (PFTs) in the study areas,
in brief, whether the oligotrophic Indonesian Throughflow and
riverine affected the phytoplankton biomass and community
composition in the two different coastal systems.

2  Materials and methods

2.1  Study area
Two cruises were carried out in the Kelantan River Estuary,

Malaya, Malaysia and in the Lembeh Strait, North Sulawesi, In-
donesia during 29–30 July and 20–21 August 2015, respectively
(Fig. 1). Among all the stations with hydrological data, there were
11 and 10 pigments samples at the surface or bottom water in the
Kelantan River Estuary, and there were four pigments samples in
the Lembeh Strait at surface layer. The stations information was
showed in Table 1.

2.2  Sampling
Sea-Bird SBE–911 Plus V2 conductivity-temperature-depth

(CTD) system was deployed to acquire hydrographic parameters.
Seawater samples for measurement of phytoplankton pigments
by high-performance liquid chromatography (HPLC) were col-
lected by CTD-mounted rosette assemblies with twelve 2.5 L
Niskin bottles (General Oceanic Inc.) during the deployment.

2.3  Pigments
Seawater samples (0.2–0.5 L) for pigment analysis were filte-

red onto Whatman GF/F filters of 25 mm diameter under gentle

Table 1.   The stations information in this study

Cruise Name
North

latitude/(°)
East

longitude/(°)
Temperature/°C Salinity

Lembeh
Strait

A12 1.47 125.23 27.90 33.90

A13 1.48 125.24 28.00 34.50

A16 1.50 125.25 28.70 33.90

A9 1.43 125.19 28.90 33.90

Kelantan
River
Estuary

C1 6.20 102.27 30.81 31.65

KW14 6.21 102.23 30.52   4.00

KW15 6.22 102.24 31.41   8.57

KW16 6.23 102.24 31.84 21.16

KW17 6.25 102.24 30.68 21.78

KW2 6.20 102.29 31.30 24.58

KW3 6.22 102.30 30.60 32.15

KW4 6.25 102.30 30.62 27.37

KW5 6.22 102.29 30.62 32.61

KW7 6.21 102.26 30.79 32.50

KW8 6.24 102.27 30.29 32.18
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Fig. 1.   Map of the study area and the location of sampling stations during cruises.
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vacuum (<0.02 MPa). The filters were wrapped with aluminum
foil and frozen stored in liquid nitrogen until analysis. When
transported to the laboratory the frozen samples were displaced
in freezer (–80°C). The pigment concentrations were detected us-
ing High Performance Liquid Chromatography (HPLC) following
standard method (Zapata et al., 2000). The frozen filter was
soaked in 1 mL N, N-dimethylformamide (DMF) extraction in a
freezer (–20°C) for 2 h (Furuya et al., 1998). The extractions were
then filtered through Whatman GF/F filters of 13 mm diameter
(Swinnex® filter holder) to clean the debris and then mixed with
ammonium acetate solution (1 mol/L) in equal proportion. A
quarter of each mixture was injected into a Shimadzu LC20A-
DAD HPLC system fitted with a 3.5 μm Eclipse XDB C8 column
(100 mm×4.6 mm; Agilent Technologies). Quantification was
confirmed by the standards manufactured by Danish Hydraulic
Institute (DHI) Water and Environment, Hørsholm, Denmark.

2.4  CHEMTAX
The chemical taxonomy program, CHEMTAX, was applied

under MATLAB (the MathWorks, Inc., Natick, Massachusetts)
platform to acquire the relative contributions of nine phytoplank-
ton groups to total Chl a. Thirteen pigment markers were intro-
duced to quantify each fraction of the total Chl a pool of nine
phytoplankton groups, including dinoflagellates (Dino), diatoms
(Diat), haptophytes_8 (Hapt_8), haptophytes_6 (Hapt_6), chloro-
phytes (Chlo), cryptophytes (Cryp), Prochlorococcus (Proc), Syne-
chococcus (Syne) and prasinophytes (Pras). The ratios of initial
inputting pigment to Chl a (Finput) followed the processes using in
previous studies (Table 2) with the addition of Dv-Chl a for Pro-
chlorococcus for the SCS (Table 3) (Mackey et al., 1996). Accord-
ing to the rule of running CHEMTAX mentioned by Latasa (2007),
successive runs were necessary to gain the convergence between
input and output ratio (Foutput). The essential rules were obeyed
to the modification and optimizing of the CHEMTAX running in
the SCS (Wang et al., 2015a).

2.5  Statistic analysis
Figures were drawn by OriginPro 9.0 (OriginLab Corporation,

Northampton, MA, USA). The independent-samples t-test, One-
Way ANOVA and Duncan’s multiple range test was dealt by
PASW® Statistics 17.0 software.

3  Results

3.1  Hydrology
The distribution of monthly climatology surface temperature

and salinity in the southern SCS and adjacent area showed the
remarkable differences, no matter in horizontal nor in seasonal
distribution (Fig. 2). For the sea surface temperature, the season-
al distribution pattern was clear (Fig. 2a), with higher values in
summer and lower temperature in winter. But for salinity, sea-
sonal pattern was weak and just appeared in some river estuary
region as result of river plume in the wet season. However, the
horizontal distribution pattern for sea surface salinity was obvi-
ously (Fig. 2b). The higher-lower salinity boundary was almost
according with 120°E meridian line.

For the study area, the iso-surface contours of temperature
and salinity implied that the hydrological process was rather
complex in the Kelantan River Estuary (Figs 3a–d). The warm wa-
ter at surface was homogeneous, of which the maximum and
minimum value of temperature was 31.794°C at Sta. KW15 and
30.248°C at Sta. KW4, respectively. Also, the warm water at bot-
tom layer distributed similarly, of which the maximum and min-
imum values were 31.840°C at Sta. KW16 and 30.286°C at Sta.
KW8, respectively.

On the other hand, the salinity varied even more intense than
the temperature did. The maximum and minimum values of sa-
linity at surface water were 32.87 at Sta. KW4 and 12.80 at Sta.
KW15, respectively (Fig. 3b). The lower salinity water intruded
more dramatically at the bottom water. The maximum and min-
imum values of salinity at bottom water were 32.50 at Sta. KW7
and 4.00 at Sta. KW14, respectively (Fig. 3d). The salinity was also
low at Sta. KW15 at the bottom water, with 8.57 in salinity. The
salinity distribution implied that the subterranean estuary or un-
derground water might be the chief source of such low salinity
water.

Table 2.   The ratio of initial inputting pigment to Chl a for the Southern Ocean (Mackey et al., 1996)
Peri But-Fuco Fuco Hex-Fuco Neo Pras Viol Allo Lut Zea Chl b Chl a

Pras (T3) 0.15 0.32 0.06 0.01 0.95 1.00

Dino 1.06 1.00

Cryp 0.23 1.00

Hapt (T3) 1.70 1.00

Hapt (T4) 0.25 0.59 0.54 1.00

Chlo 0.06 0.06 0.20 0.01 0.26 1.00

Syne 0.35 1.00

Diat 0.75 1.00

Table 3.   The ratio of initial inputting pigment to Chl a for the South China Sea
Peri But-Fuco Fuco Hex-Fuco Neo Pras Viol Allo Lut Zea Chl b Dv-Chl a Chl a

Dino 1.06 1.00

Diat 0.75 1.00

Hapt_8 0.25 0.59 0.54 1.00

Hapt_6 1.70 1.00

Chlo 0.06 0.06 0.20 0.01 0.26 1.00

Cryp 0.23 1.00

Proc 0.37 0.68 1.00

Syne 0.35 1.00

Pras 0.15 0.32 0.06 0.01 0.95 1.00
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In the Lembeh Strait, the temperature and salinity varied

mildly (Figs 3e, f). The salter water at surface than in the Kelantan

River Estuary had the typical characters of the West Pacific Ocean

surface water. Maximum values of salinity at surface water were

34.50 at Sta. A13 and 33.90 at the other three Stas A9, A12 and A16,

respectively. Although the salinity was higher, the temperature

was lower than that in the Kelantan River Estuary significantly.

The maximum and minimum values of surface temperature were

27.900°C at Sta. A14 and 28.900°C at Sta. A9, respectively.

The T–S properties synthetically expressed the characters of
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Fig. 2.  
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water at the stations both in the Kelantan River Estuary and in the
Lembeh Strait (Fig. 4). Less salty and warmer water was obvious
in the Kelantan River Estuary along each isopycnal. The poten-
tial density (σ0) was less than 16.0 kg/m3 at surface water and the
bottom low salinity water. In the Lembeh Strait, the σ0 was more
than 20.0 kg/m3 at surface water, which was similar as the up-
welling water from the West Pacific Ocean.

3.2  Pigments
The Chl a concentration could be a proxy for Chl a concentra-

tion distribution in the Kelantan River Estuary (Figs 5a, b) and in
the Lembeh Strait (Fig. 5c) showed dramatically spatial variation.
The Chl a concentration was low at surface in the Lembeh Strait,
which it was 0.580–0.682 μg/L, with the average (0.620±0.039) μg/L.
Nevertheless, the Chl a concentration fluctuated violently at sur-
face in the Kelantan River Estuary, in which the biomass was
0.299–3.988 μg/L, with the average (0.922±0.992) μg/L. The bio-
mass at bottom water was higher than at surface in the Kelantan Ri-
ver Estuary, in which the Chl a concentration was 0.704–2.352 μg/L,
with the average (1.493±0.571) μg/L.

Otherwise, for the other major pigments concentrations, fuc-
oxanthin monopolized pigments in the Kelantan River Estuary
(Fig. 6a), but Chl b, zeaxanthin and fucoxanthin were three most
abundant pigments in the Lembeh Strait (Fig. 6b). In the
Kelantan River Estuary, the fucoxanthin/Chl a ratio varied
0.045–0.261, the zeaxanthin/Chl a ratio varied 0.019–0.168 and
the Chl b/Chl a ratio varied 0.075–0.137 at the surface layer. But
at the bottom, the fucoxanthin/Chl a ratio varied 0.076–0.301, the
zeaxanthin/Chl a ratio varied 0.022–0.146 and the Chl b/Chl a ra-
tio varied 0.050–0.162. It was almost equivalent between the sur-
face and bottom, except a slight higher fucoxanthin/Chl a ratio at
bottom. In the Lembeh Strait, the fucoxanthin/Chl a ratio varied
0.113–0.132, the zeaxanthin/Chl a ratio varied 0.081–0.127 and
the Chl b/Chl a ratio varied 0.306–0.333. It showed the very differ-
ent range of ratio compared to the Kelantan River Estuary, firstly
near the mid–value compared with the Kelantan River Estuary
approximatively for fucoxanthin/Chl a, and secondly the higher
ratios for zeaxanthin/Chl a and Chl b/Chl a ratio implied the im-
portant contribution by pico-phytoplankton in the Lembeh
Strait.

3.3  Phytoplankton community
As results of the CHEMTAX, phytoplankton community com-

position was different in the two study areas (Fig. 7). In the Lem-
beh Strait, prasinophytes (26.48%±0.83%) and Synechococcus
(25.73%±4.13%) occupied ~50% of the Chl a biomass, followed by
diatoms (20.49%±2.34%) and haptophytes T8 (15.13%±2.42%). At
surface water in the Kelantan River Estuary, diatoms (58.53%±
18.44%) dominated more than half of the phytoplankton bio-
mass, followed by Synechococcus (27.27%±14.84%) and prasino-
phytes (7.00%±4.39%). And it showed the similar status at the
bottom water, where diatoms, Synechococcus and prasinophytes
contributed 64.89%±15.29%, 16.23%±9.98% and 8.91%±2.62%,
respectively.

4  Discussion
Although the stratification was remarkable at each station

during the cruise, characters on hydrology still varied at different
stations. The distinction freshwater fluxes in the Kelantan River
Estuary might have impact on the nutrients supplement, follow-
ing by the patchiness in the phytoplankton biomass and com-
munity succession. On the contrary, the upwelling in the coastal
region near the Lembeh Strait had the typical characters as the
West Pacific water and the oligotrophic status made the regions
have lower phytoplankton biomass and the pico-phytoplankton
dominated.

Although the low salinity in the Kelantan River Estuary, there
was no river plume features during the cruise, and it could be im-
plied that the subterranean estuary or underground water might
be the chief source of such low salinity water. The exceptional
conditions from this situation could be the poor status in avail-
able light. The reduction on water turbidity would be the explan-
ation for the underdevelopment status (Chung et al., 2014; Jiang
et al., 2014; Tseng et al., 2014). The turbidity in the Mississippi
River Estuary was much lower than that in the Changjiang Estu-
ary, so the biological processes were more active in the former,
where the high biomass would appear in plume with 12–20 in sa-
linity compared less biomass below 28 in the Changjiang River
Plume (Bianchi et al., 2013). In this study, the decreasing in avail-
able light was affected seriously. The warming effect had also
been pointed out among inter-annual tendency. An increasing
tendency was distinct in the Chl a biomass in the Yellow Sea-East
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Fig. 2.   The distribution of monthly climatology surface temperature (a) and salinity (b) in the southern South China Sea and adjacent
area. The data were accessed from the WOA13.
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China Sea, both in spring and summer blooms (Xu et al., 2013).
Combining the ratio of pigments to Chl a with the salinity dis-

tribution could give the information about the adaptation of dif-
ferent phytoplankton groups to the runoff diluted, in general, the
terrigenous nutrients supply. In the present study, the ratio of
pigments to Chl a showed that different pattern neither between
the two study areas nor at varied salinity gradients in the
Kelantan River Estuary (Fig. 8). The ratioes of fucoxanthin to Chl
a and zeaxanthin to Chl a distributed in mirror image under the
salinity neither the riverine nor the salty end-member. It submit-
ted to the normal knowledge that these two groups occupied the

different ecological niche, especially in the coastal ecosystem
(Brun et al., 2015). For the ratio of Chl b to Chl a, it was almost
steady along the salinity gradient, but was higher in the Lembeh
Strait. It could be explained as the prasinophytes with more Chl b
concentration usually acted as the important component in the
oligotrophic West Pacific water (Santos et al., 2017).

Comparison of the phytoplankton community composition
was conducted between the two coastal regions (Fig. 9). It could
be summarized concisely the more diatoms in the Kelantan River
Estuary than in the Lembeh Strait. But the latter possessed more
haptophytes T8 and prasinophytes than in Kelantan River Estu-
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Fig. 3.   Temperature and salinity contours at surface (a, b), at bottom (c, d) in the Kelantan River Estuary and at surface in the Lembeh
Strait (e, f).
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Fig. 5.   Chl a concentration (ng/L) at surface (a), at bottom (b) in the Kelantan River Estuary and at surface in the Lembeh Strait (c).
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Fig. 6.   Pigments concentration and composition in the Kelantan River Estuary (a) and in the Lembeh Strait (b).
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ary. There was no difference significantly for the Synechococcus
Chl a concentration between the two coastal regions. In our pre-
vious study in the Sunda Shelf and the Strait of Malacca, where
was adjacent to the Kelantan River Estuary, Synechococcus dom-
inated 60%–80% of the total phytoplankton biomass. Diatoms
contributed greater than 20% at stations with higher nutrient
concentration carrying by the river runoff in the Strait of Malacca
(Wang et al., 2015b). The nutrients were the most meaningful en-

trainment for the biological processes in the riverine discharge. It
was obvious that excess nitrate and silicate was in disproportion
compared to the Redfield ratio (Redfield, 1958). So it could imply
that the different phytoplankton community composition
between the two regions implied that the bottom up control af-
fected the phytoplankton biomass in the Lembeh Strait where the
oligotrophic water derived from the West Pacific. The terrigen-
ous nutrients supplied the diatoms growing, and pico-phyto-
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Fig. 7.   Phytoplankton community composition in the Kelantan River Estuary (a) and in the Lembeh Strait (b).
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Fig. 8.   Salinity (a), fucoxanthin/Chl a (b), zeaxanthin/Chl a (c) and Chl b/Chl a (d) ratio at each station.
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plankton was grazed through top down control in the Kelantan
River Estuary.

5  Conclusions
There was significant spatial variation of phytoplankton bio-

mass and community composition in the Kelantan River Estuary
and in the Lembeh Strait. The Chl a concentration was low at
surface in the Lembeh Strait and fluctuated violently at surface in
the Kelantan River Estuary. The phytoplankton Chl a concentra-
tion at bottom water was higher than at surface in the Kelantan
River Estuary. Pico-phytoplankton, especially the Synechococcus
and prasinophytes were abundant in the Lembeh Strait, but diat-
oms dominated in the Kelantan River Estuary. The different
phytoplankton community composition between the two re-
gions implied that the bottom up control affected the phyto-
plankton biomass in the Lembeh Strait. The terrigenous nutri-
ents supplied the diatoms growing, and pico-phytoplankton was
grazed through top down control in the Kelantan River Estuary.
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