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Abstract

High-frequency  surface  wave  radar  (HFSWR)  and  automatic  identification  system  (AIS)  are  the  two  most
important sensors used for vessel tracking. The HFSWR can be applied to tracking all vessels in a detection area,
while the AIS is usually used to verify the information of cooperative vessels. Because of interference from sea
clutter, employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of
Bragg peaks. Analyzing changes in the detection frequencies constitutes an effective method for addressing this
deficiency.  A  solution  consisting  of  vessel  fusion  tracking  is  proposed  using  dual-frequency  HFSWR  data
calibrated by the AIS. Since different systematic biases exist between HFSWR frequency measurements and AIS
measurements, AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.
First, AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC
assignment algorithm. From the association results of the cooperative vessels, the systematic biases in the dual-
frequency HFSWR data are estimated and corrected. Then, based on the corrected dual-frequency HFSWR data,
the vessels are tracked using a dual-frequency fusion joint probabilistic data association (JPDA)-unscented
Kalman filter (UKF) algorithm. Experimental results using real-life detection data show that the proposed method
is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with
tracking processes involving single-frequency data.
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1  Introduction
Marine surveillance is a significant activity in the manage-

ment of an exclusive economic zone (EEZ), and the assessment
of illegal vessels is the primary task of maritime surveillance.
There are two main sensors used for vessel tracking surveillance
of large marine areas: automatic identification system (AIS) and
high-frequency surface wave radar (HFSWR). The AIS is de-
signed to avoid vessel collisions and can provide accurate in-
formation on cooperative vessels, i.e., the vessel position, length,
width, velocity and heading. However, not all vessels are
equipped with the AIS. Vessels with operable AIS equipment are
usually defined as cooperative vessels, while others are non-co-
operative vessels (Ji et al., 2014a). The HFSWR, which is ex-
ploited in a frequency band of 3–30 MHz, can detect and track
vessels by differentiating between the echoes from vessels and
the ocean caused by different Doppler shifts (Ponsford and
Wang, 2010). The HFSWR is advantageous because it can offer
continuous time surveillance capacity and direct the velocity es-
timations and has a long range (Grosdidier et al., 2010; Maresca
et al., 2014). However, the HFSWR has a low spatial resolution

(Gurgel et al., 2010).
In recent years, several algorithms for vessel detection and

tracking using the HFSWR have been developed (Braca et al.,
2015). Dzvonkovskaya et al. (2008, 2010) proposed a statistical
method to analyze the HFSWR detection capacity for various ves-
sel types. HFSWR systems are characterized by a poor azimuthal
resolution, a high nonlinearity, and a significant false alarm rate.
A joint probabilistic data association (JPDA) technology with the
unscented Kalman filter (UKF) was proposed for vessel tracking
(Braca et al., 2012). The JPDA method is a measurement-to-track
association algorithm that has been proven valid for the tracking
of multiple targets in a cluttered environment (Bar-Shalom and
Li, 1995). The UKF is usually used to estimate the state of a target
in a nonlinear system (Xiong et al., 2006). Maresca et al. (2014)
proposed a vessel tracking method using multiple radars, and
data fusion technology has been applied to improving the track-
ing performance. In the above mentioned works, AIS measure-
ments are only used as the ground truth to validate the vessel target.

The dual-frequency HFSWR is often used to suppress the ef-
fects of sea clutter (Ji et al., 2014b). The sea clutter represents the  
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returns from the sea during target detection processing. Bragg
peaks, which are caused by the resonant interaction of HFSWR
signals with waves, usually submerge the vessel returns with the
surrounding returns (Ince et al., 1998). Therefore, Bragg peaks
can generate blind velocity zones, and vessels that fall into these
zones cannot be distinguished. Detecting frequency changes
constitutes one of the more effective methods for overcoming
this deficiency. A vessel that falls into the blind zone of a particu-
lar frequency can be detected at another frequency. Therefore,
the vessel detection with dual-frequency data can improve the
vessel tracking capability. Ji et al. (2016) proposed a vessel target
detection algorithm based on fused range-Doppler (RD) images
for the dual-frequency HFSWR. In this work, the dual-frequency
data are fused at the RD-image level to obtain more reliable asso-
ciation results.

Some fusion algorithms have been proposed with AIS and
radar measurements. In the work of Habtemariam et al. (2015), a
measurement-level fusion algorithm was proposed to combine
radar and AIS data in which radar measurements are utilized to
update the AIS ID probabilities because of the uncertainties in
the AIS ID-to-tracking capability. Vivone et al. (2015) proposed a
knowledge-based multi-target vessel tracking method for the HF-
SWR in which AIS information is applied to providing prior in-
formation for sea lanes. Different dynamic models are used for
the tracking according as whether vessels are within sea lanes. In
these fusion algorithms, AIS measurements can provide some
prior knowledge for the vessels and sea lanes.

To make use of prior AIS knowledge, the transformation of
the AIS and HFSWR data into a standard reference system is a
prerequisite process for the fusion of multiple-sensor systems
(Zhou et al., 1997). Measurement biases may exist between vari-
ous sensor systems, and many sensor registration algorithms
have been proposed to compensate for these systematic errors
(Zhou et al., 1997 , 1999; Bruno et al., 2013). Zhou et al. (1999)
proposed a registration algorithm in an earth-centered earth-
fixed (ECEF) coordinate system, and a least squares (LS) method
was used to estimate the systematic errors between two radar
systems. Bruno et al. (2013) proposed a theoretical analysis for
HFSWR systematic biases for a comparison with AIS data.

In this study, our goal is to track vessels using the dual-fre-
quency HFSWR and AIS measurements. Since different systemat-
ic biases exist between the HFSWR frequency measurements and
AIS measurements, AIS information is used to estimate and cor-
rect the HFSWR systematic bias at each frequency. The AIS provi-
des measurements in the world geodetic system 1984 (WGS84)
reference datum, while the HFSWR provides measurements in
radar station polar coordinates. The AIS measurements are
transformed into the radar station polar coordinates, and the sys-
tematic biases between the AIS and dual-frequency HFSWR
measurements are estimated with an iterative method. Follow-
ing the compensation of the HFSWR systematic biases, vessels
are tracked with a data fusion JPDA-UKF tracking algorithm with
the dual-frequency HFSWR measurements.

The rest of the paper is organized as follows: Section 2 intro-
duces vessel dynamic and measurement models; Section 3
presents a method used to estimate the HFSWR systematic bi-
ases with the association results of cooperative vessels; Section 4
proposes a new fusion JPDA-UKF tracking method for the dual-
frequency HFSWR; Section 5 provides experimental results using
real-life detection data; and finally, the conclusions are drawn in
the Section 6.

2  Vessel dynamic and measurement models
The AIS provides measurements in the World Geodetic Sys-

tem 1984 (WGS84) reference datum, while HFSWR provides
measurements in the radar station polar coordinates. To simplify
the measurement system, the AIS measurements are trans-
formed into the radar station polar coordinates, after which a dy-
namic model is established in the Cartesian coordinate system.

2.1  Vessel dynamic model
The vessel dynamic model at a time k  is defined in the

Cartesian coordinate system as follows:

k = k k¡1+ k; (1) 

k = [x k ~x k yk ~yk]
T x k yk

~x k ~yk

where ,  and  are the position values

along the x-axis and y-axis, respectively,  and  are the velo-
city vectors along the x-axis and y-axis, respectively; and Qk is the
processing noise. It is assumed that the vessel is moving with a
uniform velocity along a straight line during the sampling time
interval. Therefore, the state transition matrix Fk is defined as fol-
lows:

F k =

264 1 Tk 0 0
0 1 0 0
0 0 1 Tk

0 0 0 1

375 ; (2) 

where Tk is the sampling time interval.

2.2  Measurement model

2.2.1  HFSWR measurement model
The HFSWR detects vessel targets continuously. The HFSWR

measurement model is given by

h
k = H (X k) + k +

h
k ; (3) 

k
h
k

H (X k) = [rk µh uk]
T

where  is the radar systematic bias, which contains the system-

atic biases in the range, azimuth and radial velocity;  is the HF-

SWR measurement noise, which is assumed to be zero-mean

white Gaussian noise; and , is the measure-

ment function of the HFSWR, rk is the range, θk is the azimuth,
and vk is the radial velocity. The measurement equations are lis-
ted as follows:

rk

q
(x k ¡ x s)

2 + (yk ¡ ys)
2

µ = tan¡1

µ
ys ¡ yk

x s ¡ x k

¶
vk =

(x k ¡ x s) ~x k + (yk ¡ ys)~ykq
(x k ¡ x s)

2 + (yk ¡ ys)
2

9>>>>>>>>=>>>>>>>>;
: (4) 

where xs and ys describe the positions of the radar stations. The
covariance matrix is defined as follows:

h =

264 ¾2
r 0 0

0 ¾µ
2 0

0 0 ¾2
v

375 : (5) 

2.2.2  AIS measurement model
The time intervals between the AIS measurement reports de-

pend on the types of AIS equipment and the dynamic state of the
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vessel (Xiao et al., 2015; Habtemariam et al., 2015). Thus, the AIS
measurement model is defined as follows:

za
k =

(
G (X k) +

a
k k = tm

re

(X k) tm
re < k < tm+1

re

; (6) 

= [ x k yk ]T

tm
re

a
k

where G(Xk)  is a measurement function of the AIS;

and Dr(Xk) is the dead reckoning (DR) function. If the sampling
time k equals the mth AIS report time , the AIS measurements
are directly provided by the AIS reports. If not, the DR method is
employed to predict the AIS position and velocity from the AIS
reports (Chaturvedi et al., 2012). Herein, it is assumed that there
are no false alarms or missed detections using the AIS measure-
ments and that the measurement noise .

3  HFSWR systematic bias estimation based on information of
cooperative vessels

Cooperative vessels can provide static and dynamic AIS in-
formation and can be simultaneously detected using HFSWR.
The measurement errors in the AIS are negligible compared with
those in the HFSWR. Thus, AIS information is treated as real in-
formation of cooperative targets. Different systematic biases ex-
ist between the HFSWR frequency measurements and the AIS
measurements. In this section, AIS information is used to estim-
ate the HFSWR systematic biases at each frequency. First, the HF-
SWR and AIS measurements of cooperative target are associated
with the JVC algorithm. Then, the HFSWR systematic biases are
estimated based on the association results.

3.1  HFSWR and AIS point target association of cooperative vessels

3.1.1  Coordinate transformation

(rk; µk)

The AIS measurements are defined in the WGS84 datum. The
positions of the AIS measurements in latitude-longitude coordin-
ates (ζa, λa) are transformed into radar station polar coordinates

 as follows:

rk = R arccos
[cos (90¡ ³a) cos (90¡ ³s)+

sin (90¡ ³a) sin (90¡ ³s) cos (¸a ¡ ¸s)]

µk = arcsin

·
cos ³a

sin (¸a ¡ ¸s)

sin s

¸
9>>>=>>>; ; (7) 

where the position (ζs, λs) denotes the geographical coordinate
pair of the radar station, R is the radius of the earth; and φs is
defined as follows:

s = sin ³a sin ³s+ cos ³a cos ³s£ cos (¸a ¡ ¸s) : (8) 

µcog

vsog

The radial velocity of an AIS measurement is obtained
through a conversion from course over ground (COG)  and
speed over ground (SOG)  data by

vk = ¡vsog £ cos (µ¡ µcog) : (9) 

vk

vk

The parameter  is a positive number when a vessel sails to-
wards the radar station, whereas  is a negative number when a
vessel sails away from the station.

3.1.2  Measurement partition
To apply the JVC algorithm, we first divide the complete set

into many different combinations. Every combination contains
all of the possible association measurements from both the AIS
and HFSWR. A pair gating method is used to find the feasible as-
sociated target measurements between each pair of sensors. Fur-
thermore, an iterative search method is employed to ensure that
the divided combinations cover all of the possible associated tar-
get measurements.

The gating thresholds between the AIS and HFSWR measure-
ments are given by

¯̄
zh

k (r)¡ za
k (r)

¯̄
6 rmax¯̄

zh
k (µ)¡ za

k (µ)
¯̄
6 µmax¯̄

zh
k (v)¡ za

k (v)
¯̄
6 vmax

9>>=>>; ; (10) 

where rmax, θmax and vmax are the range, azimuth and radial velo-
city gating thresholds for the HFSWR and AIS measurements, re-
spectively. These three gating thresholds correspond to the ac-
curacy of the HFSWR detection results, and the accuracy is re-
lated to the HFSWR resolution. The HFSWR range resolution,
which is determined by the signal bandwidth, and an azimuth
resolution are related to the antenna aperture, while the radial
velocity resolution is related to the radar coherent integration
time.

The iterative search method can filter out all of the possible
associated target measurements and combine them into one
combination. Thus, all of the data are divided into several com-
binations. The method begins with any measurement from any
sensor. Here, we use the ihth HFSWR measurement as the begin-
ning point to demonstrate the iterative search method. The main
steps are as follows.

zh
k; ih

Step 1: In the HFSWR set, only one measurement ( ) is

defined. Furthermore, one empty set AIS set is defined.
Step 2: Record the number of elements in the AIS and HF-

SWR sets.
Step 3: Use every measurement in the HFSWR set, traverse all

of the AIS measurements, find all of the AIS measurements that
fall within the gating thresholds of Eq. (10), and then add them
into the AIS set.

Step 4: Use every measurements in the AIS set, traverse all of
the HFSWR measurements, find all of the HFSWR measurements
that fall within the gating thresholds of Eq. (10), and then add
them into HFSWR set.

Step 5: If the existing number of elements in the AIS and HF-
SWR sets are equal to the number of elements in Step 2, go to
Step 6; otherwise, go to Step 2 and continue the iteration.

Step 6: The combination of the AIS and HFSWR sets repres-
ents the iterative search results.

After the iterative search, we can divide all of the measure-
ments into different combinations. There are two types of com-
binations.

Type 1: The union of the AIS and HFSWR sets only contains
the measurements of one sensor. This type is not considered in
the cooperative target association.

Type 2: The union of the AIS and HFSWR sets contains the
measurements from both sensors. These measurements can po-
tentially originate from the cooperative vessels.

3.2  JVC point association
For each Type 2 combination, the JVC assignment algorithm

is used to associate the HFSWR and AIS point targets. The JVC al-
gorithm is usually used for global data association endeavors
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(Malkoff, 1997; Sheng et al., 2010; Zhang et al., 2015). Here, we
used the JVC algorithm to solve the point association problem.

cihia

The purpose of the JVC algorithm is to find the optimal asso-
ciation results in order to obtain the minimum sum of the assign-
ment cost , which is defined as

J = min
ih=nhX
ih=0

ia=naX
ia=0

dihiacihia; (11) 

subject to the following:

ih=nhX
ih=0

dihia = 1 for ia = 1; 2; : : : ; na; (12) 

ia=naX
ia=0

dihia = 1 for ih = 1; 2; : : : ; nh; (13) 

dihia = f0; 1g dihia = 1

dihia = 0
cihia

where , is a binary function. A value of  rep-
resents the association of the ihth HFSWR point with the iath AIS
point, whereas  indicates that the two points are not asso-
ciated. The assignment cost  is defined as follows:

c =

26666664

c00 c01 c02 ¢ ¢ ¢ c0(na¡1) c0na

c10 c11 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ c1na

c20
:::

:::
:::

:::
:::

:::
:::

c(nh¡1)0
:::

::: c(nh¡1)na

cnh0 cnh1 ¢ ¢ ¢ ¢ ¢ ¢ cnh(na¡1) cnhna

37777775 : (14) 

Because of the existence of false alarms and non-cooperative
targets, the HFSWR and AIS points are not always matched. Thus,
a value of ih=0 indicates that the corresponding AIS point has no
associated HFSWR point, and a value of ia=0 indicates that the
corresponding HFSWR point has no associated AIS point.

cihia

In the point association process, the AIS points are treated as
real targets, while the noise measurements of the HFSWR points
are assumed to have a zero-mean Gaussian distribution. Here,
the reciprocal of the HFSWR conditional probability is selected as
the assignment cost. For ih>0 and ia>0,  is defined as follows:

cihia = 1=P
©

zh
k; ih

=za
k; ia

ª
: (15) 

The conditional probability for detection using HFSWR is
defined as

P
©

zh
k; ih

=za
k; ia

ª
= P

£
zh

k; ih
(r) =za

k; ia
(r)
¤

P
£
zh

k; ih
(µ) =za

k; ia
(µ)
¤
£

P
£
zh

k; ih
(v) =za

k; ia
(v)
¤
; (16) 

where the probability of each vector is defined as follows:

P
£
zh

k; ih
(r) =za

k; ia
(r)
¤
=

zh
k; ih
(r)Z

¡1

1p
2 ¾

e¡
h

t¡z
a
k; ia (r)¡¢k(r)

i2
2¾2 dt: (17) 

3.3  Systematic bias derivation
According to the results of association for the cooperative ves-

sels at the time k, we can derive the HFSWR systematic bias at the

time k. Because of the existence of systematic biases and meas-
urement noise, the HFSWR measurements for the same target do
not equal the AIS measurements. If the ihth HFSWR measure-
ment and the iath HFSWR measurement are associated with each
other, we can derive

zh
k; ih

¡ k ¡ wh
k; ih

= za
k; ia

: (18) 

For n associated results at the time k,

nX
m=1

³
zh

k; im
h
¡ k ¡ wh

k; im
h

´
=

nX
m=1

za
k; im

a
; (19) 

im
hwhere  represents the index of the HFSWR measurements for

the mth association results. Furthermore, we can derive

nX
m=1

zh
k; im

h
¡ n ¢ k¡

nX
m=1

wh
k; im

h
=

nX
m=1

za
k; im

a
: (20) 

nX
m=1

wh
k; im

h
¼ 0

If the number of cooperative associations is large, the meas-

urement noise . Therefore, we can estimate the HF-

SWR systematic bias by

k =
1
n

Ã nX
m=1

zh
k;im

h
¡

nX
m=1

za
k; im

a

!
; (21) 

and can be estimated as follows:

¾2 =

nP
m=1

³
zh

k; im
h
¡ za

k; im
a

´2

n ¡ 1
:

(22) 

3.4  Systematic bias estimation
A systematic bias estimation algorithm is based on the associ-

ation results for cooperative vessels. However, the HFSWR sys-
tematic biases are unknown during the point association process.
Therefore, we must first suppose initial values for the HFSWR
systematic biases and then use an iteration method to estimate
the bias and covariance.

(0)
k (r) = 0

(0)
k (µ) = 0

(0)
k (v) = 0

¾
(0)
k (r) =

rmax

3
¾
(0)
k (µ) =

µmax

3
¾
(0)
k (v) =

vmax

3

The values of the HFSWR systematic biases and covariance

are initialized as follows: , , ,

,  ,  ,  iteration time

i=0, and ξ=[0.1 0.01 0.01].

(i)
k (r; µ; v) ¾

(i)
k (r) ¾

(i)
k (µ) ¾

(i)
k (v)

te
k

¾te
k

¯̄̄
(i)
k (r)¡ te

k (r)
¯̄̄
6 »(r)

¯̄̄
(i)
k (µ)¡ te

k

(µ)j > »(µ)
¯̄̄
(i)
k (v)¡ te

k (v)
¯̄̄
< »(v)¯̄̄

(i)
k (r)¡ te

k (r)
¯̄̄
> »(r)

Main iteration has three steps. Step 1: based on the supposed

parameters , , , and , point meas-

urements are associated using the JVC point association al-
gorithm. Step 2: the systematic biases are derived as described in

section 3.3 to obtain a temporary bias  and a temporary cov-

a r i a n c e  .  S t e p  3 :  i f  ,  

,  a n d  ,  g o  t o  S t e p  4 .  I f

, the range bias is updated as follows:

(i+1)
k (r) =

(i)
k (r) + (¡1)± s

k (r) ; (23) 

s
k (r) =

1
2

¯̄̄
(i)
k (r)¡ te

k (r)
¯̄̄

where , and δ is defined as follows:

134 ZHANG Hui et al. Acta Oceanol. Sin., 2018, Vol. 37, No. 7, P. 131–140  



± = 0 if
(i)
k (r) > te

k (r)

± = 1 if
(i)
k (r) < te

k (r)

9>=>; : (24) 

The range covariance is updated as

¾
(i+1)
k (r) =

1
3

³
rmax ¡

(i+1)
k (r)

´
: (25) 

(i)
k (r; µ; v) ¾

(i)
k (r)

¾
(i)
k (µ) ¾

(i)
k (v)

Similarly, the azimuth and radial velocity parameters are up-

dated. Then, i=i+1. Go to Step 1. Step 4: , ,

 and  are the final estimated values.

4  Fusion JPDA-UKF vessel tracking algorithm
Following the estimation of the HFSWR biases, the dual-fre-

quency biases can be corrected, after which the measurements at
each frequency are mapped into the same level. Therefore, the
dual-frequency measurements can all be used in the vessel track-
ing algorithm. The JPDA-UKF algorithm is effective for target

tracking purposes. Here, we propose a fusion JPDA-UKF vessel
tracking algorithm for the dual-frequency HFSWR data. In this al-
gorithm, the dual-frequency measurements are employed as the
point targets, and different frequencies are assigned with differ-
ent weights. The measurements are fused in the measurement-
to-track JPDA association process. The UKF is employed to es-
timate the states of the vessels. The fusion JPDA-UKF vessel
tracking algorithm is introduced as follows.

(1) Track initiation: Two point estimates are used to initiate
the tracks for both dual-frequency measurements.

(2) Position prediction: Based on the track, the vessel posi-
tion at the next sample time is predicted using the dynamic mod-
el in Eq. (1), the measurement at the next sample time is pre-
dicted using Eq. (4), and the innovation vector of each track is
updated.

¯
f 1
ij ¯

f 2
ij

(3) Data association: The measurement-to-track association
is based on the JPDA framework. The association probabilities

 and  are computed for each frequency following the literat-

ure (Maresca et al., 2014):

¯
f 1
ij ´

(
P fno measurement are origniated by j th vesselg ; i = 0

P fith measurement are origniated by j th vesselg ; i 6= 0
; (26) 

¯
f 2
ij ´

(
P fno measurement are origniated by j th vesselg ; i = 0

P fith measurement are origniated by j th vesselg ; i 6= 0
: (27) 

where f1 and f2 represent the HFSWR working frequencies.

(4) Track update: for the Track j, the estimated state vector

j
kjk

j
kjkX  at the Time k and the covariance P  using feasible meas-

urements at the Time k along Track j are updated as follows:

x
j
kjk = wf 1

24 f 1
0j x

j
kjk¡1 +

mj(k)X
i=1

f 1
ij x

j
kjk (i)

35+ wf 2

24 f 2
0j x

j
kjk¡1 +

mj(k)X
i=1

f 1
ij x

j
kjk (i)

35 ; (28) 

P
j
kjk = wf 1

8<: f 1
0j P

j
kjk¡1 +

mj(k)X
i=1

f 1
ij

·
P

j
kjk +

³
X

j
kjk (i)¡ X

j
kjk

´³
X

j
kjk (i)¡ X

j
kjk

´T
¸9=;+

wf 2

8<: f 2
0j P

j
kjk¡1 +

mj(k)X
i=1

f 2
ij

·
P

j
kjk +

³
X

j
kjk (i)¡ X

j
kjk

´³
X

j
kjk (i)¡ X

j
kjk

´T
¸9=; ; (29) 

j
kjk¡1

j
kjk (i)

wf 1 wf 2

where X  is the state prediction with (k-1) measurements,

X  is the UKF update using the ith validated measurement;

and  and  are the weights of the dual-frequency measure-
ments.

In this algorithm, we describe only the dual-frequency fusion
process in the vessel tracking algorithm, while the other details of
the JPDA and the UKF in the HFSWR tracking algorithm are re-
ferred to the work of Maresca et al. (2014).

5  Experimental results
In this section, real-life dual-frequency HFSWR and AIS ves-

sel detection data are used to evaluate the performance of the
proposed algorithm. The detection areas are located within the
range of 37.0°–40.5°N and 118.5°–122°E. The experiment consists
of two parts: the first is the test vessel tracking experiment, and
the second is the multi-target vessel tracking experiment.

The HFSWR detection data of vessels are obtained from a

coastal dual-frequency radar with working frequencies of 4.7 and
8.9 MHz. The radar point target sampling interval is 1 min. The
HFSWR measurements are detected using the CFAR method
through adaptive power regression thresholding (APRT)
(Dzvonkovskaya and Rohling, 2007).

The AIS detection data are derived from AIS reports, which
are acquired from the terrestrial AISs. For consistence with the
radar data, we refreshed the AIS data with a sampling time of 1
min using the DR method.

5.1  Single-target dual-frequency JPDA-UKF tracking experiment
based on test vessels
This section verifies the feasibility of the dual-frequency fu-

sion JPDA-UKF tracking algorithm for the experimental vessel
named Yi Xing. We use the route that the vessel sailed as our de-
signed route, and we track it using the dual-frequency HFSWR.
The shipping line of the experimental vessel is shown in Fig. 1,
and the sailing time ranged from 06:01 to 18:30 on April 13th. The
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vessel target was tracked using the dual-frequency HFSWR over
the course of an hour from 16:51:42 to 17:51:42.

The tracking results for the experimental vessel using differ-
ent frequencies are shown in Fig. 2. Frequencies 1 and 2 and the
fusion frequency can effectively track the test vessel, and the
tracking results of the dual-frequency fusion detection agree
more with the real AIS tracking data than the results obtained us-

ing single frequencies. The tracking results for the range, the azi-
muth and radial velocities using different frequencies are shown
in Figs 3, 4 and 5, respectively. The mean tracking errors are
shown in Table 1. The improvement in the azimuth error is the
most obvious, while the improvements in the errors of the range
and the radial velocity are relatively slight.

5.2  Multi-target dual-frequency JPDA -UKF tracking experiment
In this section, multiple targets are tracked using the dual-fre-

quency HFSWR. The detection areas are located within the range
of 37.0°–40.5°N and 118.5°–122°E. The detection time ranged
from 09:28:30 to 10:28:30 on September 6, 2013.

5.2.1  Bias estimation
The HFSWR systematic biases are estimated with the inform-

ation of the cooperative vessels. We first associate the HFSWR
measurements and the AIS measurements using the JVC point
association algorithm. Then, we estimate the systematic biases
using the systematic bias estimation algorithm.

The dual-frequency HFSWR system range, azimuth and radi-
al velocity biases are highlighted in Fig. 6. From Fig. 6a, the value
of the range bias is evidently small, and the range bias at Fre-
quency 1 is higher than the range bias at Frequency 2. From Fig.
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Fig. 1.   Shipping line of the cooperative test ship.
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Fig. 2.   Tracking results for the test vessel tracking different by
using different frequencies.
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Fig. 3.   Range results for tracking the test vessel at frequencies.
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Fig. 4.   Azimuth results for tracking the test vessel at different fre-
quencies.
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Fig. 5.   Radial velocity results for tracking the test vessel at differ-
ent frequencies.
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6b, we can observe that the azimuth bias at Frequency 1 is ap-
proximately –5° and that the azimuth bias at Frequency 2 is ap-
proximately –2°. From Fig. 6c, the radial velocity bias is also
clearly small.

5.2.2  Bias correction analyses for the tracking of cooperative ves-
sels

To analyze the HFSWR systematic bias correction results, the
cooperative vessel is tracked to verify the correction results of the
HFSWR point targets. AIS tracking results for the cooperative ves-
sel are extracted from the AIS measurements. The corresponding
HFSWR radar points are selected using the gating thresholds and

the nearest neighbor method.
A comparison between the range values of the AIS tracking

points and the corresponding HFSWR points is shown in Fig. 7.
The blue circles represent the AIS tracking point targets, and the
red circles represent the point targets at the HFSWR Frequency 1,
while the red squares represent the corrected point targets at the
HFSWR Frequency 1. The green points represent the point tar-
gets at the HFSWR Frequency 2. Missing HFSWR points may have
been missed during the radar detection process. In Fig. 7, the
corrected HFSWR points are closer to the AIS data.

A comparison between the azimuth values of the AIS tracking
points and the corresponding HFSWR points is shown in Fig. 8.
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Fig. 6.   Range, azimuth, and radial velocity bias estimations for the HFSWR measurements.
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Fig. 7.   Comparison of the range within the cooperative vessel
measurements.
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Fig. 8.   Comparison of the azimuth within the cooperative vessel
measurements.

Table 1.   Tracking performance of the test vessel
Evaluation metric HFSWR f1 HFSWR f2 HFSWR fusion

Mean range error/km 0.46 0.42 0.36

Mean azimuth error/(°) 3.21 1.56 1.23

Mean radial velocity error/km·h–1 0.56 0.39 0.40
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From Fig. 8, the azimuth values of the HFSWR points have high
biases compared with those of the AIS points. The corrected
dual-frequency HFSWR points are closer to each other and to the
AIS points. The corrected results are more useful for the fusion of
the dual-frequency HFSWR points. Figure 9 compares the radial
velocities of the AIS tracking points with the corresponding HF-
SWR points. The corrected velocity results indicate that the radi-
al velocity cannot improve the accuracy naturally.

5.2.3  JPDA-UKF tracking
To verify the effects of the JPDA-UKF tracking algorithm, ten

cooperative vessels are tracked in this section. Figure 10 shows
the results of AIS tracking of the ten vessels examined in the ex-
periment. The vessels are tracked using HFSWR Frequencies 1
and 2 in addition to HFSWR dual-frequency fusion data. Track-
ing using the HFSWR fusion method is conducted based on the
systematically bias-corrected HFSWR data.

The mean range, azimuth and radial velocity errors are used

to evaluate the performances of the tracking algorithms, which
are defined as follows:

¹ =
1

N tr ¢ ttr

N trX
j=1

( ttrX
k=1

£
zh

k (j )¡ za
k (j )

¤)
; (30) 

zh
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where  is the measurement value of Track j, which is trans-

formed from the position at the time k;  is the AIS point
value of Track j, Ntr is the number of the true track, where only
unmissed tracks are considered as true tracks; and ttr is the track-
ing time.

The tracking performances of the ten vessels are highlighted
in Table 2. The fusion JPDA-UKF vessel tracking algorithm can
provide lower mean errors and higher tracking capabilities than
tracking using a single frequency. All of the 10 tracks are tracked
using the dual-frequency algorithm, while Tracks 2 and 3 are lost
during the tracking processes using Frequencies 1 and 2, respect-
ively.

Tracks 1 and Track 2 are selected to demonstrate the tracking
details. Among these tracks, Track 1 is a vessel sailing away from
the station, while Track 2 is a vessel sailing toward the radar sta-
tion. The vessel tracking results using the HFSWR Frequencies 1
and 2 and HFSWR dual-frequency fusion data are shown in Figs
11, 12 and 13 for the range, the azimuth, and the radial velocity,
respectively. The corresponding AIS tracks are also labeled in the
figures to verify the tracking effects.

During the initial stages in Figs 11–13, the tracking results at
Frequency 2 are closer to the AIS tracking data. However, Track 2
is missed using Frequency 2 when the sampling time is 20 min.
The tracking process using the HFSWR fusion method can
provide higher tracking accuracies than the tracking processes
with single frequency. The errors in the range and radial velocity
for the three tracking methods are all small, while the error in the
azimuth is relatively large.
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Fig. 10.   AIS tracking results for the ten vessels.
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Fig. 11.   Range results during vessel tracking at different frequen-
cies.
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Fig. 9.   Comparison of the radial velocity within the cooperative
vessel measurements.

Table 2.   Tracking performances for the ten vessels
Evaluation matric HFSWR f1 HFSWR f2 HFSWR fusion

Mean range error/km 0.54 0.65 0.49

Mean azimuth error/(°) 3.49 1.98 1.86

Mean radial velocity error/km·h–1 0.43 0.39 0.26

Number of tracking targets lost 2 3 0
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6  Conclusions
Tracking a marine vessel with the dual-frequency HFSWR

data can improve the tracking capability and accuracy. Since the
HFSWR systematic biases are different for different frequencies,
the dual-frequency tracking processes are traditionally conduc-
ted through the implementation of tracking association and
tracking fusion. In this paper, we propose a new vessel fusion
tracking procedure with dual-frequency HFSWR incorporating
an AIS calibration technology. The measurements of the cooper-
ative vessel are used to evaluate the HFSWR systematic biases.
After the biases are corrected, a dual-frequency fusion JPDA-UKF
algorithm is applied to track the vessel. The experimental results
of real-life detection data show that the proposed method can-
not only track the vessels in real time but also improve the track-
ing accuracy compared with the tracking processes involving
single-frequency data. However, with an increase in the number
of tracking targets, the tracking time will grow immensely,
primarily because the JPDA algorithm is time consuming. When
the number of tracking targets is increased, this method is un-
able to track all of the targets in 1 min with the computer used in
this study (Intel i3-3220CPU, 16G RAM). Future research will
concentrate on improving the efficiency of the tracking al-
gorithm and reducing the tracking time.
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Fig. 12.   Azimuth results during vessel tracking at different fre-
quencies.
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Fig. 13.   Radial velocity results during vessel tracking at different
frequencies.
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