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Abstract

We examined the scale  impacts  on spatial  hot  and cold spots  of  CPUE for  Ommastrephes  bartramii  in  the
northwest Pacific Ocean. The original fishery data were tessellated to 18 spatial scales from 5′×5′ to 90′×90′ with a
scale interval of 5′ to identify the local clusters. The changes in location, boundaries, and statistics regarding the
Getis-Ord Gi* hot and cold spots in response to the spatial  scales were analyzed in detail.  Several statistics
including Min, mean, Max, SD, CV, skewness, kurtosis, first quartile (Q1), median, third quartile (Q3), area and
centroid were calculated for spatial hot and cold spots. Scaling impacts were examined for the selected statistics
using  linear,  logarithmic,  exponential,  power  law  and  polynomial  functions.  Clear  scaling  relations  were
identified for Max, SD and kurtosis for both hot and cold spots. For the remaining statistics, either a difference of
scale impacts was found between the two clusters, or no clear scaling relation was identified. Spatial scales coarser
than 30′  are not  recommended to identify  the local  spatial  patterns of  fisheries  because the boundary and
locations of hot and cold spots at a coarser scale are significantly different from those at the original scale.
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1  Introduction
Spatial patterns of marine and estuarial fisheries are import-

ant geographic observations that can benefit sustainable explora-
tion (Feng et al., 2017a; Huang et al., 2014; Jiang et al., 2016) and
provide managers with the best information for responsible and
responsive management (Cope and Punt, 2011). These patterns
are usually in the form of a spatiotemporal distribution and its re-
lationships with oceanic environments (Chen et al., 2014; Jen-
nings et al., 2009; Swartz et al., 2010; Yu et al., 2015). They are
commonly analyzed using integrated geographic information
systems (GIS), spatial analysis, geostatistics and remote sensing
(Carocci et al., 2009; Meaden and Aguilar-Manjarrez, 2013). The
spatiotemporal distribution of fisheries resources has been in-
vestigated extensively for offshore and pelagic species such as
Ommastrephes bartramii, Dosidicus gigas, Lophelia pertusa,
Chaceon notialis, and Thunnus albacares (Chen and Chiu, 2003;
Chen et al., 2008; Feng et al., 2017b; Fosså et al., 2002; Gilly et al.,
2006; Gutiérrez et al., 2011; Nishida and Chen, 2004; Paulino et
al., 2016; Yu et al., 2016a). These studies have made a substantial
contribution towards understanding spatial distribution and ag-

gregation of fisheries and resolution of spatial problems of fisher-
ies and aquaculture worldwide.

Spatial patterns in fisheries are commonly analyzed on a spe-
cified grid where the original data have been tessellated to a reg-
ularly-defined spatial scale. In some case studies, original and
un-tessellated fishery data at a very coarse scale were used to
analyze the spatial patterns of pelagic species (Feng et al., 2017c;
Su et al., 2008). Feng et al. (2017a) identified the spatial variabil-
ity of O. bartramii in the northwest Pacific Ocean at original
scales, while Su et al. (2008) examined the relationship between
spatiotemporal patterns of blue marlin (Makaira nigricans) in
the Pacific Ocean on a 5°×5° coarse scale. A spatial scale of
30′×30′ is the most widely used fishing grid for investigating the
distribution of commercial fisheries such as O. bartramii and D.
gigas (Chen et al., 2008; Yu et al., 2016b). For example, Chen et al.
(2008) conducted a stock assessment at a 30′×30′ scale to spa-
tially estimate stock size and proportional escapement of O.
bartramii in the northwest Pacific Ocean. On the same scale, Xu
et al. (2016) examined the effect of sea surface temperature in-
crease on the potential habitat of O. bartramii in the Northwest  
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Pacific Ocean; Yu et al. (2016b) evaluated the effects of climate
variability on habitat suitability of D. gigas over the 2006–2012
period in the sea waters offshore Peru. Finer scales have com-
monly been used to examine spatial patterns of fisheries in
coastal waters. Saul et al. (2013) explored the spatial distribution
of reef fish and estimated their spatial autocorrelation at a spatial
scale of 10′×10′ on the West Florida Shelf. Using the same spatial
resolution of 10′×10′, Gao et al. (2016) built a boosted regression
trees-based model to forecast fishing ground of Scomber ja-
ponicus in the Yellow Sea and East China Sea. At a much finer 1
km×1 km spatial scale, Harford et al. (2015) simulated scenarios
representing spiny lobster distribution at Glover’s Reef Marine
Reserve, Belize.

Spatial patterns at one scale may not be valid at a different
scale (Wu, 2004) and mismatch of model spatial scale and biolo-
gical stock structure may compromise management goals (Cope
and Punt, 2011), because the patterns and structures differ from
scale to scale (Feng and Liu, 2015). This phenomenon has been
recognized as “scale impact” or “scale effect” (Turner et al., 1989;
Wiens, 1989). Tian et al. (2010) noted the scale impact on catch-
per-unit-effort (CPUE) standardization and conducted a case
study using the commercial fishery data of O. bartramii and the
corresponding oceanographic data in the northwest Pacific
Ocean. They tessellated the fishery data into 0.5°, 1°, 2°, 3°, 4° and
5° scales and showed that spatial scale significantly affected the
standardization of CPUE. Using a similar tessellation scheme,
Gong et al. (2014) evaluated the effects of spatial scale on habitat
suitability modeling for O. bartramii in the northwest Pacific
Ocean. They noted that a scale such as 30′ is too large and may
compromise the reliability of modelling and miss significant de-
tails of the scaling relations. Research has also showed that the
changing spatial scales may substantially affect the observed spa-
tial patterns for fisheries resources (Guinet et al., 2001; Yang et
al., 2013).

We have conducted a quantitative evaluation of the scale ef-
fect on several spatial indices in analyzing the observed patterns
of O. bartramii resources in the northwest Pacific Ocean (Feng et
al., 2016). These spatial indices included global Moran’s I index,
Geary’s C, Getis-Ord General G, the average nearest neighbor
(ANN) and Ripley’s K function. These indices were focused on
the examination of global patterns in terms of clustering, dispers-
al and random distribution of fisheries. We proposed trend and
extent indicators that quantify the scale impacts of the spatial in-
dices. Based on spatial autocorrelation statistics Moran’s I and
Geary’s C, we identified 25′×25′ as the optimum scale for August
and October and 20′×20′ as the optimum scale for September in
conducting spatial analyses of O. bartramii in the northwest Pa-
cific Ocean. We also identified 50′×50′ as the coarsest allowable
spatial scale for August and October and 50′×50′ as the coarsest
allowable spatial scale for September. The optimum and coarsest
allowable spatial scales changed by month since the scaling ef-
fects depend on monthly different commercial fishery data.

This paper extends early study of Feng et al. (2016) and exam-
ines the scale impact of on local spatial clusters using the same
fishery dataset of O. bartramii. There are three major differences
between the earlier study and the present paper, which are as fol-
lows: (1) the early study investigated the scale impacts of the
global patterns while the present paper examines the scale im-
pacts of the local patterns, (2) the global indices of spatial rela-
tionships were calculated in the earlier study while the summary
statistics within the local clusters are computed in the present pa-
per, and (3) the early study examined a vast of spatial indices
while the present paper focuses on the spatial hotspots derived

from Getis-Ord Gi*. Specifically, the hot and cold spots at various
spatial scales were identified and changes in their locations,
boundaries and statistics in relation to spatial scales were stud-
ied in more detail. In examining scale impacts, we selected a
number of spatial and non-spatial indices including Min, mean,
Max, SD, CV, skewness, kurtosis, first quartile (Q1), median, third
quartile (Q3), area and centroid. Our study examines the relation-
ships between hot/cold spots and spatial scale. Our results con-
tribute to enhancing our understanding of the relationships bet-
ween spatial scale and local spatial clusters of fisheries, and to the
selection of an appropriate spatial scale for analysis of fisheries.

2  Materials and methods

2.1  Commercial fishery data
Commercial fishery data of O. bartramii in the northwest Pa-

cific Ocean were collected by the Chinese Squid-jigging Techno-
logy Group (CSTG). The data include the dates of fishing, fishing
locations (longitude and latitude), the number of fishing vessels
operating per day, and daily catch of vessels. The commercial
fishing data of O. bartramii were selected within the boundary of
38°–46°N and 150°–162°E. In this paper, we focused on Chinese
Mainland fisheries of O. bartramii in August, September and Oc-
tober from 2004 to 2013 and examined their scale impacts on the
hot and cold spots of this squid fishery.

Examination of the scale impacts on local clusters was con-
ducted using CPUE data. The CPUE at each vessel location was
calculated as the total catches divided by the number of fishing
operations at the location:

CPUE j =

P10
i=1 Ci; j ; ssP10
i=1 E i; j ; ss

; (1) 

where Ci, j, ss is the catch (t) in month j year i within a fishing grid
(spatial scale, SS), and Ei, j, ss is the number of the corresponding
fishing operations (efforts) in month j year i within the same fish-
ing grid.

The spatial scale of the original data was assessed using the
ANN method (Ebdon, 1985; Mitchell, 2005). The estimated spa-
tial scales of the original datasets are 1.07′ for August, 0.94′ for
September and 0.99′ for October (Feng et al., 2016). These origin-
al datasets were then tessellated to 18 spatial scales from 5′×5′ to
90′×90′, with a scale interval of 5′ between two adjacent spatial
scales. We therefore used a total of 19 spatial scales for multi-
scale analysis, including the original dataset. Figure 1 illustrates
the original fishery data and the datasets that were tessellated at
30′×30′, 60′×60′ and 90′×90′ spatial scales.

2.2  Hot and cold spots
Global spatial autocorrelation methods such as Getis-Ord

General G measure the overall clustering or dispersion pattern of
fishing grounds (Feng et al., 2017a). In contrast, local spatial
autocorrelation statistics (Getis and Ord, 1996; Ord and Getis,
1995; Peeters et al., 2015) are commonly used to investigate the
specific spatial distribution and local clusters of fisheries (Feng et
al., 2017a). Getis-Ord Gi* is one of the most widely used local spa-
tial autocorrelation statistics, and is given by (Getis and Ord,
1996; Ord and Getis, 1995):

Gi¤ =

Pn
j=1 wi;j x j¡ ¹X

Pn
j=1 wi;j

S £
r
(n
Pn

j=1 w2
i;j ¡

³Pn
j=1 wi;j

´2
= (n ¡ 1)

;
(2) 
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¹X
where S is the standard deviation of all data points, n is the num-
ber of data points, xj is the CPUE of points j,  is the averaged
value of all points, and wi, j is the spatial weights matrix indicat-
ing the spatial adjacency relations between the point (i) in pro-
cessing and the neighboring point j. Generally, the spatial weight
matrix wi, j is defined by using either an adjacency standard or a
distance standard (Getis and Aldstadt, 2010).

In practice, Getis-Ord Gi* statistics return two values: (1) the
z-score of each point, and (2) the consequent significance p-
value. At 5% significance, a z-score greater than 2 indicates a hot
spot while a z-score smaller than –2 indicates a cold spot. A hot
spot signifies that the data points with high CPUE values are sur-
rounded by similarly high CPUE points, whereas a cold spot sig-
nifies that points with low CPUE are surrounded by similarly low
CPUE points. This indicates that both hot and cold spots are spa-
tial clusters in the fishery. A z-score between –1 and 1 indicates
that the underlying pattern probably results from random spatial
processes (Feng et al., 2017a). In our study, the hot and cold spots
of O. bartramii in the northwest Pacific Ocean were identified us-
ing Getis-Ord Gi* in ArcGIS 10.1.

2.3  Measured indices
Several spatial and non-spatial indices were selected to meas-

ure the spatial distribution of CPUE for O. bartramii and then to

examine any scale impacts. We used indices such as summary
statistics including Min, mean, Max, SD, CV, skewness, kurtosis,
Q1, median, and Q3 as well as spatial measurements such as area
and centroid. Spatial hot and cold spots in the fishery were iden-
tified by Getis-Ord Gi*, a widely used local spatial autocorrela-
tion statistic (Getis and Aldstadt, 2010; Getis and Ord, 1996; Ord
and Getis, 1995). Hot and cold spots on different spatial scales
were identified and the changes in their locations, boundaries,
and statistics resulting from the changes in spatial scales were
studied in detail.

2.4  Measuring the scale impacts
The scale impacts of the indices were assessed by regression

modelling using linear, power law, logarithmic, exponential, and
polynomial functions (Table 1), drawing references from the lit-
erature in landscape ecology (Feng and Liu, 2015; Turner et al.,
1989; Wu, 2004).

In Table 1, y is the spatial index and x is the spatial scale. For
linear, logarithmic and exponential functions, positive a indic-
ates a growing trend of an index while a negative a indicates a de-
caying trend as the spatial scale increases. The sign of a is a trend
indicator. For power law functions, the fractal dimension d quan-
tifies the scale extent according to earlier works (Feng and Liu,
2015), where d=–1–a (a>0) or d=1–a (a<0). Negative d (a>0) in-
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Fig. 1.   Original fishery data and tessellated fishery data at 30′×30′, 60′×60′ and 90′×90′.
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dicates that the spatial index increases as the spatial scale be-
comes coarser (i.e., a larger grid size), whereas a positive d (a<0)
indicates that the spatial index decreases as the spatial scale be-
comes coarser. The dimension |d| approaching 1 means that the
spatial index is not sensitive to the change of the spatial scale,
whereas large |d| (e.g., |d|≥1.3) means that the spatial index is
sensitive to the change of the spatial scale (Feng and Liu, 2015;
Wu, 2004).

3  Results

3.1  The distribution of O. bartramii CPUE at 30′
Each fishery data in this study corresponds to 19 spatial

scales, leading to a total of 57 datasets for all three months. We
therefore analyzed the distribution of CPUE under a widely ap-
plied spatial scale of 30′ (Fig. 2). There are 136, 101 and 107 fish-
ing points and their mean values are 2.89, 2.69 and 2.12 for Au-
gust, September and October, successively. The standard devi-
ation ranges from 1.05 to 1.59, suggesting relatively aggregation

distribution of the CPUE data. Figure 2 shows that the CPUE yield
leptokurtic distribution for all three months, indicating low vari-
ations of O. bartramii CPUE across space. These CPUE datasets
are therefore suitable for identifying the spatial hot and cold
spots using local Getis-Ord Gi* statistic.

3.2  Scale impacts on summary statistics of entire dataset
The summary statistics for CPUE in the study area did not ex-

hibit any clear scaling relations except Max and CV, as illustrated
by scaling equations, the associated goodness-of-fit R2s (Table 2)
and the scaling curves (Fig. 3). This means that most of the sum-
mary statistics varied with a change in spatial scale. Both Max
and CV showed exponential scaling relations with decaying
trends for August and September, which may be due to the fact
that the calculated CPUE is the averaged value of all data points
within a fishing grid. The two statistics yielded double-quadratic
polynomials that open upward for October. The 55′ scale defines
the break point in the two quadratic polynomials for both Max
and CV, and the early stages of Max and CV show decaying trends

Table 1.   Potential scale impacts of indices in analyzing fisheries resources
Scaling relations Equation Meaning

Linear y=ax+b a>0 means that the index increases as spatial scale (fish grid) becomes coarser, i.e.,
a growing trend, whereas a<0 means that the index decreases as the spatial
scale becomes coarser, i.e., a decaying trend.

Logarithmic y=alnx+b

Exponential y=a+becx

Power law y=bxa

Polynomial y=anxn+…+a1x+a0, n≥2 n=2 indicates a parabolic curve, while n>2 indicates a more complex relationship
between a spatial index and the corresponding spatial scales.

Table 2.   Scaling equations and goodness-of-fit R2s of entire fishery data of each month for O. bartramii in the northwest Pacific
Ocean

Index Month Equation R2 Relation Character
Max Aug. y=6.120 5+8.752 4exp(–0.061 1x) 0.861 6 exponential decay

Sep. y=5.166 5+8.452 7exp(–0.062 9x) 0.775 4 exponential decay

Oct. y=10.582 3–0.283 4x+0.004 3x2 0.824 3 quadratic polynomial upward

y=76.356 2–1.950 1x+0.013 1x2 0.901 7 quadratic polynomial upward

CV Aug. y=0.306 9+0.290 9exp(–0.017 7x) 0.851 3 exponential decay

Sep. y=0.414 5+0.125 3exp(–0.976 7x) 0.707 7 exponential decay

Oct. y=0.665 3–0.007 2x+0.000 2x2 0.766 4 quadratic polynomial upward

y=3.642 7–0.080 3x+0.000 5x2 0.886 0 quadratic polynomial upward

          Note: y represents the summary statistics and x the spatial scale measured in minutes (hereinafter the same).
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Fig. 2.   The distributions of CPUE at 30′×30′ for O. bartramii CPUE in the northwest Pacific Ocean.
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with changing scales. The CV for August and September showed
a consistent lowering variation for O. bartramii CPUE as the spa-
tial scale became coarser, while the CV for October is more complex.

3.3  Scale impacts on summary statistics for hot/cold spots
Spatial hot and cold spots were identified for all three

months, as illustrated by the local clusters at four spatial scales
including original, 30′×30′, 60′×60′, and 90′×90′ (Fig. 4). One hot
and two cold spots were identified for August at the original
scale, one hot and one cold spots were identified for September,

and two hot and one cold spots were identified for October. The
tessellations at 30′×30′ and 60′×60′ scales showed the same res-
ults, but the shapes differ between spatial scales. No cold spot
was identified for any fishery data at coarse spatial scales from 80′
to 90′. The locations of both hot and cold spots moved slightly
with changing scales. Points with z-score ranging from –1 to 1
(indicating spatial random patterns of CPUE) increased signific-
antly as the spatial scale became coarser. In other words, the spa-
tial patterns of CPUE were homogenized as spatial scale became
coarser.
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Fig. 3.   Scaling relations of Max and CV of CPUE for O. bartramii in the northwest Pacific Ocean.
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Fig. 4.   The spatial hotspots of O. bartramii in the northwest Pacific Ocean at original, 30′×30′, 60′×60′ and 90′×90′ scales.
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The results show that the scaling relationships of hot spots
differ from those of cold spots (Table 3, Figs 5 and 6). For hot
spots, clear scaling relationships were identified for six of the
summary statistics including Max, SD, CV, kurtosis, Q1 and me-
dian (Table 3 and Fig. 5) while no clear scaling relationships were
identified for the remaining statistics such as Min, mean, skew-
ness and Q3. There are only two statistics (CV for October and Q1
for August) with goodness-of-fit R2s exceeding 0.9, two statistics
(SD for September and kurtosis for August) with R2s smaller than
0.7, while the remaining statistics have R2s between 0.7-0.9. The
scaling relationships for the hot spots define four general cat-
egories: (1) quadratic polynomial relationships that open up-
ward for Max, SD and CV; (2) exponential relationships with a de-
caying trend for kurtosis in September and October; (3) linear re-
lationships with a decaying trend for kurtosis in August and lin-
ear relationships with a growing trend for median in October;
and (4) power law relationships with a growing trend for Q1 for
all three months and for median in August and September. The
Max value decreased before the nadirs but increased after the
nadirs with changing spatial scales. The CV showed a lowering
variation for O. bartramii CPUE before the nadirs but an increas-

ing variation after the nadirs, as the spatial scale became coarser.
CPUE kurtosis changed from leptokurtic to platykurtic with in-
creasingly coarser spatial scales. Moreover, both Q1 and median
indicate a general increase of CPUE for hot spots, as the spatial
scale became coarser. This also indicates that these two statistics
were highly sensitive to the change of the spatial scales.

For cold spots, clear scaling relationships were identified for
six of the summary statistics including mean, Max, SD, skewness,
kurtosis and Q3 (Table 3 and Fig. 6) while no clear scaling rela-
tionships were identified for the remaining statistics such as Min,
CV, Q1 and median. Goodness-of-fit R2s exceed 0.7 except SD in
August; its R2s is small and does not exhibit a clear scaling rela-
tionship (Fig. 6). The scaling relationships for the spatial cold
spots come in two general categories: (1) a quadratic polynomial
relationship that opens upward for mean, SD, skewness, kurtosis
and Q3; and (2) an exponential relationship with a decaying
trend for Max. The mean, SD, skewness, kurtosis and Q3 statist-
ics decrease before the nadirs and increase after the nadirs. The
SD for September and October showed that a decreasing trend
and the CPUE values tend to be close to the mean. Skewness for
September and October was positive but the left-skew was in-

Table 3.   Scaling equations and goodness-of-fit R2s of spatial hot and cold spots for O. bartramii in the northwest Pacific Ocean
Cluster Index Month Equation R2 Relation Character

Hot spot Max Aug. y=13.378–0.240 1x+0.001 9x2 0.853 0 quadratic polynomial upward

Sep. y=12.373–0.268 5x+0.002 4x2 0.763 6 quadratic polynomial upward

Oct. y=10.418–0.246x+0.003x2 0.830 7 quadratic polynomial upward

SD Aug. y=2.234 1–0.053 8x+0.000 5x2 0.775 8 quadratic polynomial upward

Sep. y=1.516 8–0.025 1x+0.000 2x2 0.667 0 quadratic polynomial upward

Oct. y=1.601–0.415x+0.000 8x2 0.758 1 quadratic polynomial upward

CV Aug. y=0.512–0.012 8x+0.000 1x2 0.845 7 quadratic polynomial upward

Sep. y=0.489 7–0.009 4x+8×10–5x2 0.801 0 quadratic polynomial upward

Oct. y=0.582 4–0.018 3x+0.000 3x2 0.919 8 quadratic polynomial upward

kurtosis Aug. y=4.170 1–0.025 4x 0.612 9 linear decay

Sep. y=6.648 6exp(–0.02x) 0.783 4 exponential decay

Oct. y=5.830 4exp(–0.015x) 0.718 9 exponential decay

Q1 Aug. y=2.403x0.143 9 0.914 0 power law growth

Sep. y=1.651 6x0.188 6 0.860 7 power law growth

Oct. y=1.564 2x0.161 5 0.860 7 power law growth

median Aug. y=1.651 6x0.188 6 0.754 1 power law growth

Sep. y=1.564 2x0.161 5 0.800 1 power law growth

Oct. y=2.739 8+0.015 1x 0.755 5 linear growth

Cold spot mean Aug. y=2.725 6–0.029 8x+0.000 2x2 0.882 9 quadratic polynomial upward

Sep. y=2.717 8–0.028 6x+0.000 2x2 0.798 1 quadratic polynomial upward

Oct. y=2.223 8–0.074 5x+0.000 7x2 0.974 4 quadratic polynomial upward

Max Aug. y=1.690 6+11.555 4exp(–0.068 7x) 0.964 5 exponential decay

Sep. y=2.600 9+11.005 3exp(–0.065 3x) 0.953 7 exponential decay

Oct. y=0.642 8+9.381 5exp(–0.067 9x) 0.985 8 exponential decay

SD Aug. – – – –

Sep. y=1.6–0.020 8x+0.000 1x2 0.749 9 quadratic polynomial upward

Oct. y=1.537–0.040 6x+0.000 4x2 0.977 6 quadratic polynomial upward

skewness Aug. y=1.729 9–0.047 2x+0.000 4x2 0.728 7 quadratic polynomial upward

Sep. y=1.130 5–0.040 8x+0.000 7x2 0.811 4 quadratic polynomial upward

Oct. y=1.285 4–0.069 4x+0.000 6x2 0.888 2 quadratic polynomial upward

kurtosis Aug. y=8.272 6–0.252 7x+0.002 2x2 0.820 7 quadratic polynomial upward

Sep. y=7.088 4–0.213 5x+0.002 0x2 0.879 2 quadratic polynomial upward

Oct. y=4.490 3–0.115 3x+0.001 1x2 0.780 1 quadratic polynomial upward

Q3 Aug. y=2.938 9–0.055 6x+0.000 6x2 0.766 9 quadratic polynomial upward

Sep. y=3.365 1–0.02x+0.000 1x2 0.747 6 quadratic polynomial upward

Oct. y=3.098 4–0.087 8x+0.000 8x2 0.980 4 quadratic polynomial upward

72 FENG Yongjiu et al. Acta Oceanol. Sin., 2018, Vol. 37, No. 5, P. 67–76  



creasingly weaker while it changed from left-skew to right-skew
for August as the spatial scale became coarser. Kurtosis for Au-
gust and September is larger than 3 at scales finer than 30′, indic-
ating that the CPUE of cold spots yielded leptokurtic distribu-
tions; in contrast, the CPUE yielded platykurtic distributions at a
scale coarser than 30′. For October, only scales finer than 20′
showed leptokurtic distributions. In addition, Q3 showed that
CPUE decreases before the nadirs while it increases after the
nadirs with the changing scales. Generally, the distribution of
CPUE tends to be increasingly asymmetric and platykurtic as the
spatial scale becomes coarser.

3.4  Scale impacts on centroids of hot/cold spots
The location of hot and cold spots as represented by their

centroids is significantly affected by spatial scale (Fig. 7). For hot
and cold spots, the centroids are close to each other at scales
finer than 30′ while they vary in location at scales coarser than
30′. The centroid of the hot spot in August moved within a region

about 2°×2° at scales finer than 60′, while it shifted over larger dis-
tances at scales coarser than 60′. For September, the centroid of
the hot spot moved only about 60′ at scales finer than 30′ but fluc-
tuated more widely at scales coarser than 30′. For October, the
centroid moved along a line with a southwest-northeast direc-
tion at scales finer than 60′, but was significantly redistributed to
the far west and east of the study area at scales coarser than 60′.
The centroid of the cold spot in August does not move signific-
antly at scales finer than 25′ but fluctuates more widely at coarser
scales, especially above 60′. The centroid in September moved
from the center (about longitude 155°E) to the west (about longit-
ude 151°E), while the centroid in October moved from the north
(latitude 41°N) to the south (latitude 39°N).

4  Discussion
Scaling issues are critical in identifying global and local spa-

tial patterns in fisheries (Ciannelli et al., 2008). Multi-scale ana-
lysis has proven effective in addressing scaling issues in land-
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Fig. 5.   Scale impacts on statistics of spatial hot spots for O. bartramii in the northwest Pacific Ocean.
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scapes, in geography and in pelagic fisheries (Feng et al., 2016;
Turner et al., 1989; Wu, 2004). We examined the scaling relations
and scale effects of local spatial patterns of fisheries, using nom-
inal CPUE data of O. bartramii in the northwest Pacific Ocean. As
revealed in a previous study (Feng et al., 2016) and in this re-
search, global and local spatial patterns such as clustering are
significantly affected by spatial scale. We have identified scaling
relationships for global spatial patterns of fisheries for O.
bartramii in the northwest Pacific Ocean that include linear, log-
arithmic, exponential, power law, polynomial and descriptive
functions. Logarithmic and descriptive relationships were not
identified in local spatial patterns for O. bartramii based on the
same fishery data.

For all data, the spatial indices (Feng et al., 2016) have clearer
scaling relationships than do the summary statistics (c.f. Table 2
and Fig. 3). The spatial indices are therefore more appropriate as
indicators of the optimum scale and coarsest allowable scale for
conducting spatial analyses. The goodness-of-fit R2s for the local
spatial patterns are small when compared to the global patterns,
indicating that the local patterns showed a slightly less strong

regularity for scaling. In other words, the scaling relationships
and scale effects of local spatial patterns are more complex. Our
previous research showed that the non-zero CPUE data points
(the Count index) yield power law scaling relationships and that
the fractal dimensions of the scale effects were 2.224, 2.265, 2.268
for August, September and October, successively (Feng et al.,
2016). We did not conduct a detailed analysis of scaling relations
for Count index of hot and cold spots in this research. A brief ex-
amination of Count index change showed that the fractal dimen-
sions are 2.487, 2.379 and 2.751 for hot spots for August, Septem-
ber and October, successively, and are 2.593, 2.529 and 2.539 for
cold spots for the same three months. This suggests that the hot
and cold spots are more sensitive to spatial scales as compared to
the entire fishery data, because the former have larger fractal di-
mensions. The Count index is closely associated with the areas of
hot and cold spots, however, the scaling relationship are more
difficult to obtain when there are fewer data within the hot and
cold spots of O. bartramii.

We identified hot and cold spots at a 0.05 significance level,
but 0.01 has been used in previous research. We speculate that
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Fig. 6.   Scale impacts on statistics of spatial cold spots for O. bartramii in the northwest Pacific Ocean.
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the scaling relationships are similar at 0.01 significance, but the
areas of the hot and cold spots would be smaller, and the cold
spots would disperse on a less coarse scale. From the centroid
perspective, the hot and cold spot locations at scales coarser than
30′ usually differ significantly from those at the original scale. It is
therefore not advisable to identify the local spatial patterns of
fisheries using this scale. Anselin Local Moran’s I can be used to
explore the statistically significant spatial clusters, i.e., hot and
cold spots (Anselin, 1995, 2004). The impact of scale on clusters
of Anselin Local Moran’s I is not discussed in this paper, but the
scaling relationships and scale effects are probably similar to
those for the hot/cold spots derived using Getis-Ord Gi*. Spatial
K-means can also identify spatial clusters of fisheries but these
clusters are not necessarily associated with the hot/cold spots
(Jain, 2010; Mullon et al., 2005). As such, the scale impacts on the
spatial clusters derived using spatial K-means may be quite dif-
ferent from those based on Getis-Ord Gi* and Anselin Local Mor-
an’s I.

We speculate that in some pelagic fisheries such as Dosidicus
gigas, Thunnus albacares and Katsuwonus pelamis, the scaling
relationships are more complex because there are fewer com-
mercial fishing records for these species as compared to O.
bartramii. For example, commercial fishery data of K. pelamis
are usually available at a coarse 1° spatial scale; as a con-
sequence, multi-scale analysis may not be accurate and/or in-
formative. The jumbo flying squid (D. gigas) is a fast-growing and
short-lived species similar to O. bartramii. Its population is usu-
ally composed of individuals who have the capacity to migrate
both vertically and horizontally in respond to changing environ-
ments (Arkhipkin and Murzov, 1986; Chen and Chiu, 2003; Yu et
al., 2016b).

This study examined the impacts of changing spatial scales
on spatial hot and cold spots for O. bartramii in the northwest

Pacific Ocean. It extends the work of Feng et al. (2016) and de-
scribes the scale impacts on local clusters by considering several
statistics including mean, SD, CV, skewness, kurtosis, Q1, medi-
an, Q3, area and centroid. The scale impacts were assessed in ac-
cordance with the linear, exponential, power law, and polynomi-
al functions as commonly reported in landscape ecology (Turner
et al., 1989; Wu, 2004) and more recently in fisheries (Feng et al.,
2016).

It should be noted that the specific parameters of the scaling
formula may not be applicable to other pelagic fisheries because
they were affected by the selection of fishery dataset, but the scal-
ing relations of spatial hotspots are appropriate to other fast-
growing and short-lived species. Meanwhile, the methods
presented in this paper are widely applicable to analyses of the
spatial scale effects for any other commercial species. Our results
contribute to a better understanding of the relationships between
spatial scale and local spatial clusters in fisheries and in selec-
tion of the appropriate spatial scale for spatial analysis in fisher-
ies.
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