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Abstract

A new method for estimating significant wave height (SWH) from advanced synthetic aperture radar (ASAR) wave
mode data based on a support vector machine (SVM) regression model is presented. The model is established
based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum
spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input
parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range
Weather Forecasts (ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm
optimization (PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to
establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF
reanalysis  data  and  the  buoy  data.  The  RMSE  values  of  the  SWH  are  0.34  and  0.48  m,  and  the  correlation
coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method
for  estimating  the  SWH  from  the  SAR  data.  The  advantage  of  this  model  is  that  SAR  data  may  serve  as  an
independent data source for retrieving the SWH, which can avoid the complicated solution process associated
with wave spectra.

Key words: advanced synthetic aperture radar wave mode, support vector machine, significant wave height

Citation: Gao Dong, Liu Yongxin, Meng Junmin, Jia Yongjun, Fan Chenqing. 2018. Estimating significant wave height from SAR imagery
based on an SVM regression model. Acta Oceanologica Sinica, 37(3): 103–110, doi: 10.1007/s13131-018-1203-7

1  Introduction
Ocean wave is an important research topic in physical ocean-

ography, and a significant wave height (SWH) is one of the most
important parameters of an ocean wave observation. The classic-
al SWH inversion methods are an algorithm developed by the
Max Planck Institute (MPI), a partition rescale and shift al-
gorithm (PARSA), and a semiparametric retrieval algorithm
(SPRA). The SWH retrieved by the MPI is based on the nonlinear
mapping relation between the wave spectrum and the image
spectrum of a SAR image. Although good SWH results can be ob-
tained, MPI must run an ocean wave numerical model (such as
WAM) to obtain a first-guess spectrum (Hasselmann and Hassel-
mann, 1991; Hasselmann et al., 1996). The PARSA method is an
improvement and extension of the MPI method. Compared with
buoy measurements, the PARSA method yields better inversion
results, but it requires the multi-view cross-spectrum of a SAR
image as the input for inversion. The SPRA algorithm requires ex-
ternal synchronized wind field information, and the wind vector
parameter is used as an input to obtain ocean wave spectra (Mas-
tenbroek and de Valk, 2000). In analyzing the MPI and SPRA al-
gorithms for the wave spectrum inversion, Sun and Guan (2006)
outlined the advantages and disadvantages of the two. An im-
proved parameterized preliminary guessing spectrum model was
used as an input of the inversion, and the SAR image spectrum

was divided into wind and wave spectra to retrieve SWH.
At present, an empirical CWAVE model (Schulz-Stellenfleth

et al., 2007) and a CWAVE_ENV model (Li et al., 2011) are mainly
applied to retrieving the SWH. Both models are second-order
multiple regression models. The main difference between them
is the SAR data used to retrieve the SWH. To avoid the problem of
having too many unknown parameters in a polynomial regres-
sion model, the researchers put forward a new method based on
a support vector machine (SVM) regression model. The SVM is a
new machine learning algorithm generated within the frame-
work of a computational learning theory. The SVM is mainly used
for data classification, but a version of the SVM for regression was
proposed by Vapnik (1998), which has made it possible to apply
the SVM as a regression estimation model (Elbisy, 2015; Wang
and Bai, 2014; Xu et al., 2016). Compared with the classical ocean
wave spectrum inversion methods, the SVM regression model
does not need additional data as inputs; the SAR data can be
used as an independent data source for SWH extraction. Further-
more, compared with the second-order multiple regression mod-
els, it is able to solve the problem of poor learning, over learning
and poor generalization. The SVM-based SWH extraction meth-
od proposed in this paper provides a new choice for estimating
the SWH from the SAR imagery.  
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2  Data

2.1  SAR data
The data used in this study are wave mode global ocean data

provided by an ASAR sensor mounted on the ENVISAT satellite.
The SWH retrieval model is established by using 17 200 scenes of
ASAR wave mode data covering an area of 5 km×10 km, which
match the ECMWF reanalysis data obtained in January 2011. The
42 774 ASAR wave mode images match the reanalysis data ob-
tained in April and May 2011 and are used to validate the SVM
model independently. The parameters of the ASAR wave mode
data are shown in Table 1.

2.2  ECMWF data
An important feature of the ECMWF reanalysis data is the as-

similation of altimeter data. The SWH data assimilated by the
global atmospheric reanalysis (ERA-interim) data have been up-
dated since 1979 and provide high accuracy in the ocean wave
observation. In this study, the SWH data provided by the ERA-In-
terim were chosen to serve as the output of SVM regression mod-
eling. The spatial resolution was 0.125°×0.125°, and the temporal
resolution was 6 h. The data were acquired in January, April and
May 2011.

2.3  Buoy data
Buoy data is one of the important means of measuring the

SWH. Most buoys are distributed in coastal waters and provide
reliable data for validating SAR inversion results. In this study, we
used 96 buoys to match the ASAR wave mode data. Finally, we
found only 12 buoy stations that could match our SAR data. Ta-
ble 2 shows location information for the 12 buoys that provided
the in situ validation dataset. Most of the buoys are located in the
Gulf of Mexico. The temporal resolution of the buoy data is 1 h.
Table 2 and Fig. 1 show the buoy parameters.

The quality control of the SWH measured by buoys is a key
step in temporal and spatial matching between the buoy data
and the SAR data. In this study, the buoy data were used to valid-
ate our SVM regression model, with the SWH ranging between 0
and 25 m. The temporal resolution of the buoy data is 1 h. In
areas with high sea-level fluctuations, the difference in the SWH
from moment to moment is no more than 10 m (Park et al., 2013).
Therefore, the peak detection method was applied to further fil-

tering the buoy data. The buoy data obtained after processing
were considered to be independent data for validating the SVM
regression model.

3  Model description
In this study, the regression model for retrieving the SWH was

established by the SVM. On the basis of a structured risk minim-
ization theory and a convex optimization theory, this method can
find a compromise between the accuracy of a given data approx-
imation and the complexity of the corresponding function. Fi-
nally, the SVM model can obtain good generalizability. Twenty-
two feature parameters were extracted from the spatial and fre-
quency domains of homogeneous SAR images as the SVM model
input; the SWH of the ERA-Interim data matched with the SAR
images was the output of the SVM model. The optimal radial
basis function (RBF) kernel parameters were obtained through
particle swarm optimization (PSO), and the SVM model was es-
tablished. Figure 2 shows the overall flow chart of the SVM mod-
eling process.

3.1  SAR image homogeneity test
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Depending on the process used to extract feature parameters
from SAR images, the quality of the SAR images can affect the ex-
traction of the SWH. For example, atmospheric phenomena such
as boundary layer rolls (Alpers and Brümmer, 1994), atmospher-
ic fronts, rain cells (Melsheimer et al., 1998), and the surface
slicks of anthropogenic or biological origin (Gade et al., 1998) will
affect the imaging process of the ENVISAT satellite, which makes
intensity images appear inhomogeneous. These images should
be removed during the establishment of the SVM model. There-
fore, it is necessary to test the homogeneity of the ASAR wave
mode images and then match the results with ECMWF reanalys-
is data. According to a standard spectral estimation theory, spec-
tral density Φk estimated from the periodogram of homogeneous
ASAR wave mode images is negative exponentially distributed
(Schulz-Stellenfleth and Lehner, 2004). The relationship between

the variance of the spectral density and the mean value
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To reduce the deviation in ASAR wave mode images, each
subimage can be divided into 256×512 subimage blocks. The op-
eration described by Eq. (2) is performed for each subimage
block, and the average is taken as the threshold for testing the
SAR image homogeneity. Equation (2) is used for verification,
where N is the number of subimage blocks:
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Table  1.     Parameters  of  SLC  images  of  ENVISAT  ASAR  wave
mode

Parameter ENVISAT ASAR

Band C (5.3 GHz)

Polarization HH or VV

Incidence angle θ/(°) 14.1–42.3

Azimuth spacing/m 4.0

Range spacing/m 7.0

Swath width/m 5 000

Table 2.   Parameters of buoys
Buoy ID North latitude West longitude Depth/m Buoy ID North latitude West longitude Depth/m

41040 14°30′ 53°01′ 4 900.0 41041 14°19′ 46°04′ 3 485.0

42001 25°53′ 89°39′ 3 365.0 42002 26°05′ 93°45′ 3 125.0

42019 27°54′ 95°21′ 83.0 42020 26°58′ 96°41′ 79.9

42035 29°13′ 94°24′ 15.0 42040 29°12′ 88°12′ 37.0

42055 22°12′ 94°00′ 3 595.0 46083 58°17′ 139°59′ 136.0

46082 59°10′ 143°23′ 296.0 46085 55°52′ 142°29′ 3 736.0
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On the basis of the statistical analysis of ASAR wave mode im-
ages, a threshold of 1.05 is used as the criterion to test the SAR
images (Schulz-Stellenfleth and Lehner, 2004). Figure 3 shows a
diagram of the ASAR image block division process.

The spatial and temporal matching windows are 100 km and
2 h, respectively. The feature parameters of homogeneous the
SAR imagery were extracted for modeling and to validate the
SVM regression model.

3.2  SAR image feature extraction

3.2.1  Spatial domain parameters

σ 2

i

SAR image feature parameters represent an important index
for reflecting information about the sea states. Whether the ex-
traction of the image feature parameters is feasible will directly
affect the accuracy with which the SWH is retrieved using an SVM
regression model. The SAR imagery statistical analysis shows that

the image variance ( ) and the average backscatter coefficient

σ0 of images show a quasi-approximate linear relationship with
SWH. Therefore, the image variance and the average backscatter
coefficient (σ0) were selected as the image feature parameters re-
quired to establish the SVM regression model.

During SAR imaging, the uncertainty in the transmit power,
receive gain, antenna pattern and other parameters of the radar
system cannot accurately reflect echo characteristics. Therefore,
it is necessary to submit the SAR images to radiometric calibra-
tion (Singh et al., 2007). The average backscatter coefficient and
variance of the images after a radiation correction can thus be
obtained as follows:

,
3

d
0 d2

d re f

1
sin( )

( )

I R

K G R
σ α

θ
 

=  
 

(3)

,
2

2 stdi

I I

I
σ

  −
=       

(4)

I

2

d( )G θ

where K is the absolute calibration constant; is the average

value of the wave mode intensity image; and σ0 is the mean value
of the backscattering coefficient after image radiometric calibra-
tion. Rd is the slant range; Rref is the reference slant range; and αd

is the angle of incidence. These parameters can be obtained by

reading the WVI data file. is the two-way mode gain value

obtained through the radiometric calibration of auxiliary files.

3.2.2  Frequency domain parameters
Obtaining structural feature information from the frequency

domain is a common approach in the field of remote sensing. To
further extract sea-state features from the SAR images, the 20 fea-
ture parameters of the SAR images in the frequency domain are
selected as the inputs of the SVM model. First, the images are
submitted to Fourier transformation. A series of orthogonal func-
tions are then used to decompose the SAR images to extract the
feature parameter information in the frequency domain. The or-
thogonal function is composed of Gegenbauer polynomials and
harmonic functions (Li et al., 2011):
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where is the orthonormal function composed of Ge-

genbauer polynomials and harmonic functions ;

and is the weight function associated with a wavenum-

ber in the respective range and azimuth in Domain A, which fea-

tures an elliptical integration area; is the general expres-

sion for Gegenberg polynomials; nk=1, 2, 3, 4 in this study;

and correspond to the odd and even terms of the har-

monic function, respectively. The process for extracting the im-
age feature parameters can be expressed as follows:
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Fig. 1.   Location of collocated buoys used for SVM model valida-
tion.
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Fig. 2.   SVM modeling process.
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where P is the ASAR image power density spectrum. The remain-
ing parameters are as determined by Schulz-Stellenfleth et al.
(2006).

3.3  SVM regression model

3.3.1  Support vector machine
The SVM is a method developed from statistical theory and is

based on the idea of the structured risk minimization. The al-
gorithm proposed by Vapnik (1998) can minimize structural risk
while minimizing the error of training samples. The SVM can be
used for pattern classification and nonlinear regression predic-
tion. For classification, the SVM attempts to classify samples by
establishing a classifying hypersphere as a decision surface. In
terms of SVM regression estimation, SVM modeling is based on
the principle of classification by introducing an insensitive loss
function ε[f (xi), yi] (Suganyadevi et al., 2016; Fadel et al., 2016).
Compared with polynomial regression models and neural net-
works, the SVM regression model has two advantages. On the
one hand, the SVM regression model is not restricted by the di-

( ).Xφ

mensions of sample data and offers strong generalizability and
high estimation accuracy. On the other hand, the basic objective
of the SVM model is to map training samples from a low-dimen-
sional space onto a high-dimensional space by mapping func-
tion Finally, a nonlinear problem is transformed into a lin-

ear problem for fitting.

Y R∈

Homogeneous SAR images are used to establish a training
data set T = {Xi, Yi, i = 1, 2, ..., n}, where Xi = {1, xi, 1, xi, 2, ..., xi, 22} is
the feature vector extracted from one of the matching homogen-
eous SAR image samples; is the SWH value obtained by
matching ECMWF; and n is the total number of samples. In the
nonlinear regression problem, the regression model function is
mapped onto the high-dimensional feature space F as follows:

,
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where is the weight vector; represents

the high-dimensional feature space that has been nonlinearly
mapped from the input space; b is a bias term; and f (X) repres-
ents the SWH estimated by the model. In estimating the SVM re-

gression model, and b are unknown parameters. Therefore,

the coefficients w and b are estimated by minimizing the follow-
ing regularized risk function:
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Fig. 3.   ASAR wave mode image division.
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where ε is a precision parameter representing the radius of the
tube located around the regression function; Lε is the insensitive
loss function; C is a penalty constant used to seek a compromise
between model generalization ability and training error.

determines the size of the hyperplane function interval,

the smaller the value of this factor is, the larger the interval be-
comes. To reduce the error of the model, the slack variables ξ and
ξ * are introduced:
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To solve the above-mentioned objective function problem,
the Lagrangian form is constructed based on the constraint con-
dition as follows:
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0;iα ∗ > iη 0.iη ∗ >where αi>0; and The following process is used

to find the saddle point using the partial derivatives of L with re-
spect to each Lagrangian multiplier for minimizing the function:
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The optimization problem with inequality constraints can be
transformed into the following dual optimization problem by
substituting Eqs (17), (18), (19) and (20) into Eq. (16):
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3.3.2  SVM regression model parameters
The estimation performance of the SVM regression model de-

pends mainly on the kernel function and kernel parameters in-
volved in model selection. Selecting a bad kernel function and
corresponding kernel parameter will make the SVM incorrectly
classified or estimated (Fadel et al., 2016). At present, the kernel
functions include a linear kernel function, a polynomial kernel
function, a sigmoidal kernel function and an RBF kernel function.
Because a regression model for nonlinear problems was estab-
lished in this study, an RBF was selected as the kernel function to
establish the SVM regression model. Compared with other ker-
nel functions, an RBF kernel function can map the original fea-
ture space onto infinite dimensions and transform a nonlinear
problem into a linear problem. The foregoing factors make it easy
to establish a regression model. Moreover, the RBF kernel has the
advantage of having fewer parameters, which reduces the com-
plexity of establishing a model. The RBFs have a wide conver-
gence domain and can be adapted to various sample situations.
The RBF kernel function is the most extensively used kernel func-
tion in SVM modeling to date and can be expressed as follows:

,
2

( , ) exp( )c cK X X X Xγ= − −
uv uv uv uv

(24)

γ X
uv

cX
uv

γ

γ

where is the kernel parameter of the RBF; is the input

sample feature vector; and is the kernel function center vec-

tor. The results of Vapnik (1998) show that when the SVM regres-
sion model is established, the parameters of the RBF kernel func-
tion and penalty factor C have a strong effect on the SVM results;
therefore, it is necessary to adopt a suitable method for optimiz-
ing the RBF kernel parameters. A PSO algorithm was first sugges-
ted by Kennedy and Eberhart (1995). The PSO is easy to imple-
ment, with high precision and fast convergence (Behravan et al.,
2016; Nisha and Pillai, 2013). Compared with the genetic al-
gorithm, the PSO reduces the complex processes of “crossover”
and “mutation” and has been widely used in parameter optimiz-
ation (Wang, 2014). In optimization, the initial population is 50,
the number of iterations is 200, C∈[0.1, 100] and ∈[0.001,
100]. On the basis of the training set, the training error of each
particle is obtained, and the global average error is calculated.
The population is updated iteratively based on the premise of
meeting the loop conditions. Finally, the corresponding para-
meters C and are obtained.

γ = 0.008 15.C =

γ

In this study, the following kernel parameters were obtained
by the PSO algorithm: and The model was

trained according to the input SVM regression model parameters
and C. In the following expression, the number of effective

support vectors is l, the support vector coefficients are an
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vector , the global error is b, the support vector is

an matrix, and n is the number of training sample features:
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3.4  SVM fitting test
The SVM regression model was established by using the Janu-

ary 2011 global matching data set. For ASAR wave mode data and

ECMWF reanalysis data matching, the temporal window was 2 h,
the spatial window was 100 km, and the number of matched
pairs was 17 200. The training dataset of the SVM model was then
used to test the fitness of the SVM model. Figure 4a shows the
comparison results, whereas Fig. 4b shows the SWH distribution
histogram.

The SVM regression model fitting test shows that the RMSE is
0.33 m, the correlation coefficient is 0.95 and the bias is 0.02 m,
respectively. Therefore, the SVM regression model can be used to
extract the SWH from the SAR data.

4  Model validation

4.1  Comparison with ECMWF data
In this paper, the SAR data gathered in April 2011 and May

2011 and matched with the ECMWF reanalysis data were used to

validate an SVM model. The matching temporal window was 2 h,
the spatial window was 100 km, and 42 774 matching pairs were
acquired from the global ocean data. Figure 5 shows the valida-
tion results obtained using the SVM model and the matched
dataset, and the corresponding SWH histogram.

According to the distribution of different regions according to
the color error band, the deviation in the SWH data between
high- and low-sea conditions is less than 0.5 m. Thus, the SVM
regression model is suitable for the SWH extraction under high-
and low-sea conditions. In addition, the SWH deviation is large
for certain SAR data, possibly because feature extraction from
images was not precise. The SAR data may be contaminated by
sea surface effects during imaging, which may result in a large
deviation in the SVM model.

4.2  Comparison with buoy data
Buoy data distributed in the Gulf of Mexico were selected to

validate the SWH retrieved by the SVM model. Fewer effective
observational data matched the buoy data when the temporal
window was set to 0.5 h. Using a 1 h temporal window for sea
conditions produced no obvious changes. Therefore, the tempor-
al window used to match SAR data with buoy data was set to 1 h
and the spatial window was set to 200 km. A total of 2 553 scene
data were matched. The SVM model results obtained using the
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Fig. 4.   Fitting test of SVM model. Comparison of SWH fitting test results (a) and SWH distribution (b).
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Fig.  5.     Scatter plot  of  SWH derived by the SVM regression compared with ECMWF (a) and histogram showing ECMWF SWH
distribution (b).
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independent SAR data are shown in Fig. 6; Fig. 6a shows the SVM
model estimation results compared with the buoy-measured res-
ults, and Fig. 6b shows the buoy-measured SWH histogram.

Figure 6a shows that the SWH results extracted by the SVM
model are good. Compared with the matched buoy data, the
RMSE is 0.48 m, the deviation is 9 cm and the scattering index
(SI) is 0.24. The histogram buoy data distribution shown in Fig.

6b indicates that 82% of the SWH data fall between 0.8 and 3.0 m.

The SVM model was applied to testing the SAR data. The RMSE

was determined to be 0.36 m, the SI was 0.19, and the bias was 5 cm.

In short, the validation results obtained using the buoy data show

that the SVM model exhibits good performance for middle- and

high-sea conditions.

5  Conclusions
In this paper, the SWH retrieval model based on the SVM is

established using an ASAR wave mode matching dataset. The
SVM model shows good inversion results for high- and low-sea
conditions. Twenty-two feature parameters were extracted as
training samples from the spatial and frequency domains of the
SAR images to fully reflect the quasi-linear relationship between
the SAR images and the SWH. In the model, the feature paramet-
ers extracted from the SAR images were used as input, and the
SWH obtained from the ECMWF was the output. An RBF was se-
lected as the kernel function to establish the model. Validated by
2 553 ASAR wave data matched with buoy data and 42 774 ASAR
data matched with ECMWF data, the SVM model was shown to
extract the SWH data from the SAR data accurately. The RMSE
values were 0.48 and 0.42 m, the deviations were 9 and 4 cm and
the scattering index values were 0.24 and 0.13, respectively. In
short, it is possible to retrieve the SWH from the SAR data as an
independent data source based on the proposed SVM model.
This method is an effective and feasible technology for extracting
the SWH.
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Fig. 6.   Scatter plot of SWH derived by the SVM regression compared with buoy data (a) and buoy SWH distribution (b).
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