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Abstract

Rainfall has two significant effects on the sea surface, including salinity decreasing and surface becoming rougher,
which have further influence on L-band sea surface emissivity. Investigations using the Aquarius and TRMM 3B42
matchup dataset indicate that the retrieved sea surface salinity (SSS) is underestimated by the present Aquarius
algorithm compared to numerical model outputs, especially in cases of a high rain rate. For example, the bias
between satellite-observed SSS and numerical model SSS is approximately 2 when the rain rate is 25 mm/h. The
bias can be eliminated by accounting for rain-induced roughness, which is usually modeled by rain-generated
ring-wave spectrum. The rain spectrum will be input into the Small Slope Approximation (SSA) model for the
simulation of sea surface emissivity influenced by rain. The comparison with theoretical model indicated that the
empirical model of rain spectrumis more suitable to be used in the simulation. Further, the coefficients of the rain
spectrum are modified by fitting the simulations with the observations of  the 2–year  Aquarius  and TRMM
matchup dataset. The calculations confirm that the sea surface emissivity increases with the wind speed and rain
rate. The increase induced by the rain rate is rapid in the case of low rain rate and low wind speed. Finally, a
modified model of sea surface emissivity including the rain spectrum is proposed and validated by using the
matchup dataset in May 2014. Compared with observations, the bias of the rain-induced sea surface emissivity
simulated by the modified modelis approximately 1e–4, and the RMSE is slightly larger than 1e–3. With using more
matchup data, thebias between model retrieved sea surface salinities and observationsmay be further corrected,
and the RMSE may be reduced to less than 1 in the cases of low rain rate and low wind speed.
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1  Introduction
Sea surface salinity (SSS) data are critical for evaluating the

global  evaporation minus precipitation (E–P),  which is  a  key
parameter of the global water cycle and ocean circulation studies
(Terray et al., 2012). The most effective method to obtain global
and long-term SSS data is satellite remote sensing. The European
Space Agency launched the SMOS (Soil Moisture and Ocean Sa-
linity mission) satellite on November 2, 2009 (Font et al., 2010;
Kerr  et  al.,  2010).  Its  main  load  is  a  Microwave  Imaging  Ra-
diometer with Aperture Synthesis (MIRAS). Another mission was
the Aquarius/SAC-D (Satellite for Scientific Applications-D) (La-
gerloef et al., 2008; Le Vine et al., 2010; Yueh et al., 2010), which
was undertaken by the U.S. National Aeronautics and Space Ad-
ministration (NASA). These two missions have provided global
SSS data over the last several years (Boutin et al., 2012; Yin et al.,
2012b).

Salinity remote sensing retrieval is based on the L-band (1.4
GHz) radiometer measured sea surface brightness temperature
(TB) and the Geophysical Model Function (GMF). The key to ob-
taining high precision SSS is the accurate simulation of the sea
surface  brightness  temperature.  In  recent  studies,  Yin  et  al.

(2012a;  2012b)  developed  the  optimal  sea  surface  emissivity
model,  deduced from the SMOS data,  based on the two scale
model and correction of the foam contribution. At the same time,
Yueh et  al.  (2013)  developed an L-band empirical  brightness
temperature model from the Aquarius data, which was used for
wind and salinity retrieval. Additionally, Ma et al. (2014), based
on the small-scale approximation (SSA) and foam model, suc-
cessfully simulated the Aquarius sea surface brightness temper-
ature.

To obtain SSS information, distributions of the sea surface
temperature and wind field are needed. However, when there is
rain,  the  sea  surface  becomes  more  complex.  Rain  has  three
main effects on salinity retrieval. First, the raindrops in atmo-
sphere change the property of microwave radiation transmission;
and it  can be easily corrected in the L-band by the model de-
veloped by Wentz (2005). Second, rainfall reduces the sea sur-
face salinity, especially in the first several centimeters related to
surface stratification, while L-band radiometry can only penet-
rate several centimeters of sea water (Felton et al., 2014; Qu et al.,
2014).  Third,  raindrops  change  the  sea  surface  roughness.
However, the latter two processes are mixed together on the sea
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surface and are difficult to separate. When the rainfall couples
with wind,  its  influence on sea surface radiation transfer  be-
comes more difficult to calculate. Boutin et al. (2013) found the
SMOS observed sea surface freshening is linearly correlated to
the  SSM/I  rain  rate,  with  an  estimated  slope  of  –0.14
psu/(mm·h–1) after correction for the rain atmospheric contribu-
tion. Tang et al. (2013) analyzed the surface emissivity measured
by  the  Aquarius  L-band  radiometer  under  rainy  conditions.
Boutin et al. (2014) studied the relation of rainfall with SSS re-
trieved by SMOS in the first centimeter of the sea surface and
compared SMOS SSS with data from Argo and surface drifters in
rain events. Tang et al. (2014) retrieved the SSS from Aquarius
under rain conditions and performed a comparison with Argo
and HYCOM data.

There is also a large amount of research on rain-induced sea
surface roughness variance. Bliven et al. (1997) and Craeye et al.
(1997) presented an analysis of ring-wave and scatterometer data
from  a  water  surface  that  was  agitated  by  simulated  rain.
Contreras and Plant (2006) developed a physically based ocean
surface wave model that considered rain and applied it to the
study of  the  rain  effect  on surface backscatter.  Sobieski  et  al.
(2009) studied the influence of the rain drop size distribution,
rain rate and frequency on sea the surface elevation variance of
rain waves as well as its impact on backscatter. All of these stud-
ies reveal that the rain-induced roughness may be a non-negli-
gible error source of salinity retrieval.

In  this  paper,  we  attempt  to  introduce  the  rain  spectrum
model into the SSA model to simulate the rain induced rough-
ness effect on sea surface L-band radiation and correct the bias
between SSS retrieved by Aquarius and ancillary SSS data under
rainy conditions. The data used in this study are described in
Section 2. The methods for simulating sea surface emissivity and
the rain effects are illustrated in Section 3. The model outputs
and their comparison with Aquarius are discussed in Section 4. A
summary is provided in Section 5.

2  Data

2.1  Aquarius data
The Aquarius instrument is a combination of radiometer and

scatterometer operating in the L-band (1.413 and 1.26 GHz, re-
spectively). The radiometer has three beams. The local incidence
angles of the beam center at the sea surface are 28.7°, 37.8° and
45.6°. The resolutions of these beams are 76 km×94 km for the in-
ner beam, 84 km×120 km for the middle beam and 96 km×156 km
for the outer beam. Together, the three beams can provide swath
coverage of approximately 390 km. The Aquarius beam locations
and resolutions are shown in Fig. 1a. Aquarius Version 2.8.1 L2
data distributed by the NASA PO.DAAC at  the Jet  Propulsion
Laboratory (JPL) have been collected in this study. The data from
January 2012 to December 2013 are used for building the model;
the data from May 2014 are used for validation. The Aquarius L2
data contain ocean surface brightness temperature, sea surface
temperature and wind vector data. The brightness temperature
has been corrected for the influence of space radiation, Faraday
rotation, and atmosphere and wind direction effects (Wentz and
Le Vine, 2013). The ancillary SST data are from the NOAA OISST
(Reynolds) product (Reynolds et al., 2007). The wind vector in-
formation is from the NCEP (National Centers for Environmental
Prediction)  numerical  weather  forecast  model.  The  original
OISST is a daily and 0.25°×0.25° grid product, and the original
NCEP wind vector is a 6-h and 1°×1° grid product. Furthermore,
the ancillary SSS data, derived from the HYCOM (US Navy HY-
brid Coordinate Ocean Model) (Chassignet et al., 2009) daily av-

eraged data-assimilative analysis, are also included in this Aquar-
ius L2 data.

2.2  TRMM 3B42 data
The TRMM 3B42 rain rate data are used in this research. The

time resolution is 3 h, and the spatial resolution is 0.25°×0.25°.
The spatial resolution is much less than the Aquarius data. The
rain rate data are from a merged product of microwave and in-
frared radiometers with high precision and global coverage, ex-
cept for latitudes higher than 50°. The Aquarius data and TRMM
data are matched when the time interval between them is less
than 1.5 h, and the rain rate data are averaged in the Aquarius’
field of view. The dotted lines in Fig. 1a correspond to the TRMM
3B42  grid,  and  the  three  ellipses  denote  the  coverage  of  the
Aquarius  beams.  Finally,  approximately  9.5  million  pairs  of
matchup data are collected for all  three Aquarius beams. The
matchup data distributions with rain rate and wind speed are
shown in Fig. 1b. Because of the large amount of data, the num-
bers here are transformed by the log function. In this figure, the
data are concentrated at moderate wind speeds and a low rain
rate. It is worth to note that the data in the heavy rain condition
are insufficient and that more data accumulation is required in
the future.
 

 
Fig.  1.   Aquarius  beam  location  and  resolution  on  the
TRMM  3B42  grid,  and  b.  aquarius  and  TRMM  3B42
matchup data number as a function of rain rate and wind
speed. The number in the color-bar denotes the common
logarithm of matchup data number N.  For example, log
N=6, N=106; here, 6 means that the matchup data number
N=106.
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3  Methods

3.1  Sea surface brightness temperature
The total sea surface brightness temperature TB,p can be de-

scribed as follows (Ma et al., 2014):

TB ;P = ep£ Ts = (ep;0+ ep;rough)£ Ts; (1)

where Ts is the sea surface temperature; ep is the total sea surface
emissivity; p (p=h, v) represents the polarization; and ep,0 is the
emissivity of a calm sea surface. According to Kirchhoff’s Law,
the calm sea surface emissivity is expressed as (Ma et al., 2014)
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where and  are the horizontally and vertically polarized
calm surface Fresnel reflection coefficients, respectively. Further-
more,  and  are the function of radiometer frequency f, in-
cidence angle q and relative permittivity of sea water e. The para-
meter e is from the Debye equation with coefficients from Meiss-
ner and Wentz (2004), which are functions of SSS and Ts.

The wind-derived rough sea surface emissivity ep,rough  is  a
function of the radiometer frequency f,  incidence angle q,  sea
surface temperature  Ts,  sea  surface salinity  SSS,  10  m-height
wind speed U10  and wind direction WD. According to Johnson
and Zhang (1999), ep,rough  can be described by the Small Slope
Approximation (SSA) model:·
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where eh,rough and ev,rough are the wind-derived rough sea surface
emissivity measured in horizontal and vertical polarization, re-
spectively. Here, erough is the integration of the sea surface wave
directional spectrum SW with the weighting function g. The sea
surface wave spectrum is the function of wind speed and WD. 

is the sea surface wave number, and  is the sea surface wave
direction. The double Durden-Vesecky spectrum (Durden and
Vesecky, 1985) is used here. The weighting function g is the func-
tion of the frequency f, the satellite incidence angle  and azi-
muth angle , the relative permittivity of sea water , the wave
number  and the wave direction .

3.2  Rain spectrum
Here, the term of the rain generated ring-wave spectrum is

used to denote the sea surface roughness spectrum induced by
rain. When a rain drop hits a water surface, it can generate a cav-
ity with a crown, which collapses to form a vertical stalk of water
and  subsides  to  spawn  rings  of  gravity  capillary  waves  that
propagate outwards. An empirical form of the rainwave-number
spectrum is expressed as the following log-Gaussian wave-num-
ber  spectrum  model  (Bliven  et  al.,  1997;  Craeye  et  al.,  1997),
which is regarded as the rain spectrum 1:
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where k is the wave number, R is the rain rate, and f (k) is given
by the dispersion relation,

!2 = (2 f )2 = gk + hk3; (5)

with  g=9.8  m/s2,  h=74  cm3/s2,  Cg  is  the  group  velocity  at

wavenumber k, SR,peak=6×10–4 R0.53 cm2 Hz is the amplitude of the
spectral peak, fp=5.772–0.001 8R Hz is the frequency at the peak,
and ∆f=4.42+0.002 8R Hz is the bandwidth.

To address the effect of rain on the sea surface, Robert and
William developed a rain spectrum model based on physical the-
ory and Ku band scatterometer data (Contreras and Plant, 2006),
which is regarded as the rain spectrum 2:
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where the symbols k, R,  and g have the same description as rain
spectrum 1, D  is  the rain drop diameter, the Marshall-Palmer
drop size distribution is used to calculate N(D), U is the terminal
fall velocity of rain drop with diameter D, J2 is the second order
Bessel function of the first  kind, v0  is  kinematic viscosity,  and
dmix=19 cm is  the depth of  the turbulent upper layer with the
eddy viscosity ve=3×10–5 m2/s.

When there is rain, SW, the sea surface wave directional spec-
trum induced by wind in Eq. (3) should instead be S, which is the
sum  of  the  wind-induced  wave  spectrum  and  rain-induced
roughness spectrum:

S = S W + S R : (8)

4  Calculation and discussion
Figure 2 illustrates the sea surface salinity (SSS) retrieved by

Aquarius minus the SSS output from HYCOM as a function of the
TRMM 3B42-derived rain rate. The rain effects are not included
when retrieving these SSS data. The total number of data entries
is approximately 9.5 million; the color of the scatter shows the
number of the data entries. Also the number of data entries is
transformed by the log function because of the large amount. The
majority of data are concentrated in the area of low rain rate and
low salinity of approximate 0. The difference between Aquarius
SSS and HYCOM SSS becomes larger as the rain rate increases.
The red line with circles shows the mean value and STD of the
discrepancy. The amplitude of the mean value increases as the
rain rate increases and can reach as much as 2 when the rain rate
is 25 mm/h. The mean value rapidly changes when the rain rate
is low and becomes more gradual as the rain rate increases. In
previous studies, Boutin et al. (2013, 2014) displayed that the dif-
ference between SMOS SSS and Argo SSS linearly decreases as
the rain rate increases, with a slope of approximately –0.14 per
mm/h; however, only a small number of data (approximately
7 817) were used in their study. In Fig. 2, the mean value of sea
surface salinity (SSS) retrieved by Aquarius minus the SSS output
from HYCOM is denoted by variable y, which behaves as a func-
tion of rain rate and can be fitted by the following function:

y = ax b; (9)

where x is the rain rate, a and b are the coefficients. Using regres-
sion analysis, we obtain a=–0.42 and b=0.50. In this study, the
variabley in Eq. (9) not only denotes the mean value of deference
of SSSs obtained from two paths, but also represents the SSS in-
duced by rain.
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Fig. 2.  The sea surface salinity (SSS) retrieved by Aquarius
minus the SSS output from HYCOM as a function of the
TRMM 3B42-derived rain rate. The red line with circles
shows  the  mean  value  and  STD  of  the  discrepancy
between the matching pair of SSS in the two datasets. The
black line denotes the fitted equation, as shown in the up-
per-right corner. Here HYCOM is a numerical model in ex-
tensive operation. The number in the color-bar denotes
the matchup data number in a log function.

 
Although  many  studies  have  focused  on  the  sea  surface

freshening effect of rain, little is known about the influence of
rain-induced roughness on sea surface emissivity. Figure 3 illus-
trates the omni-directional curvature spectrums for wind waves
and rain-induced roughness, respectively. The wind wave spec-
trum shown here is calculated using the double Durden-Vesecky
spectrum model (Durden and Vesecky, 1985), and the corres-
ponding wind speed range is from 1 to 25 m/s from bottom to
top.  The  rain-induced  roughnessspectrum  shown  is  the  rain
spectrum 1, calculated from Eq. (4), and the corresponding rain
rate is from 1 to 25 mm/h from bottom to top. The three vertical
lines represent the microwave wave number k0=29.56 rad/m in
1.413 GHz, k0/10 and k0×10, respectively. The spectrum in this
range will strongly influence the value of sea surface emissivity.
The maximum value of the rain-induced roughness spectrum is
comparable to and even higher than the wind wave spectrum for
low wind speeds. When wind speed increases, the value of wind
wave spectrum becomes larger than the rain-induced roughness
spectrum, so the rain-induced roughness will have less impact
on the sea surface during strong wind events. However, the wind
curvature spectrum in Fig. 3 is non-directional. In fact, the direc-
tional wind wave spectrum in the cross-wind direction is often
lower  than the rain-induced roughness  spectrum,  which can
weaken the direction signal and increase sea surface emissivity.
In a previous study, Figs 1 and 6 in Tang et al. (2013) showed the
weakness of the directional signal in the scatterometer and ra-
diometer underthe condition of wind speed higher than 4.5 m/s.
The NRCS (Normalized Radar  Backscatter  Cross  Section)  re-
ceived by the scatterometer and the sea surface emissivity detec-
ted by the radiometer also increased when there was rain. At the
same time, the change of SSS, caused by rain freshening (desalt-
ing), has less impact on the direction signal and emissivity in a
well-mixed sea surface under the condition of high wind speed.
Compared with rain freshening, the rain-induced roughness has
a larger impact on the sea surface directional signal and emissiv-

ity under the condition of middle and high wind speed. Under
the condition of heavy rain with a rate of  25 mm/h, if  it  is  as-
sumed that the sea water in the upperlayer (5 m depth) is well
mixed with rainwater, it can be calculated that the influence of
rain on the sea surface salinity is about –0.175 h–1, which is a rel-
atively small value (Boutin et al., 2014).

 

 
Fig. 3.  Curvature spectrums induced by wind and rain, re-
spectively, as a function of the wave number. The wind
speed is from 1 to 25 m/s, with a 1 m/s bin from bottom to
top. The rain rate is from 1 to 25 mm/h, with a 1 mm/h bin
from  bottom  to  top.  Here  k0=29.56  rad/m  is  the  mi-
crowave wave number in 1.413 GHz, the corresponding
wavelength l=2p/k0=0.21 m.

 
Figure 4 shows the emissivity increment induced by rain. The

sea surface emissivity is related to polarization state; here the H-
polarized and V-polarized emissivity increments are denoted by
solid line and dotted line, respectively. In calculation, the incid-
ence angle is  46.29° (which corresponds to the outer beam of
Aquarius), the sea surface temperature is 20°C, the sea surface
salinity is 35 and the wind speed is 7.5 m/s.

In Fig. 4a, the lines without other symbols denote the satel-
lite-observed emissivity increment caused by liquid rain water in
the atmosphere, calculated from the model derived by Wentz
(2005). This figure shows that this satellite-observed emissivity
increases with the rain rate, the line slope in H polarization is lar-
ger  than  in  V  polarization,  and  the  emissivity  increment  can
reach 1.63e–3  (with the corresponding brightness temperature
eauals 0.48 K) in H polarization and 1.17e–3 (with the correspond-
ing brightness temperature equals 0.34 K) in V polarization when
the rain rate is 25 mm/h.

The emissivity increment caused by rain-induced sea surface
freshening, named as rain SSS H or V, is denoted by the lines with
crosses in Fig. 4a. This emissivity increment is calculated by the
total emissivity calculated from Eq. (1) with Aquarius SSS minus
the calm sea emissivity calculated from Eq. (2) with HYCOM SSS
(the bias between the two types of SSS is shown by Eq. (9) ). In
calculation, the wind speed isassigned to 7.5 m/s, but the effect of
rain-induced sea surface roughness on emissivity  is  not  con-
sidered. Figure 4 shows that the H-polarized emissivity is larger
than  the  V-polarized  emissivity;  however,  the  discrepancy
between two emissivity becomes small as the rain rate increases.

In Fig. 4a, the lines with triangles represent the emissivity in-
crement induced by the rain-related sea surface roughness spec-
trum calculated from Eqs (3), (4) and (8); here, Eq. (4) denotes
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Fig. 4.  The satellite-detected emissivity increment caused by the rain in the atmosphere (lines), sea surface freshening, i.e., the
rain-induced SSS (lines with crosses); rain-induced roughness spectrum 1 (lines with triangles), and rain-induced roughness
spectrum 2 (lines with circles) as a function of the rain rate in H polarization (solid lines) and V polarization (dotted lines); and b.
the satellite-detected emissivity  increment calculated by the Aquarius and TRMM 3B42 matchup dataset  (lines),  emissivity
increment induced by rain-induced roughness spectrum 1 (lines with triangles) and rain-induced roughness spectrum 2 (lines with
circles) as a function of the rain rate in H polarization (solid lines) and V polarization (dotted lines).

 

the rain spectrum 1. The lines with circles represent the emissiv-
ity increment calculated from Eqs (3), (6) and (8); here, the Eq.
(6) denotes the rain spectrum 2. Although different models of
rain spectrumare used, the basic trend of emissivity increment
change with rain rate is similar. The increasing rate of emissivity
increment  is  higher  in  V  polarization  than  that  in  H
polarization.The emissivity increment is large in H polarization
with a low rain rate and is large in V polarization with a high rain

rate. In detail, there are some differences in the variation trend:
For rain spectrum 2, the increase rate is small for low rain rates
and becomes large for middle and high rain rates, while the op-
posite is true for rain spectrum 1. Many investigations reveal that
rain  can  change  the  sea  surface  roughness  at  L-band,  as  ob-
served by the scatterometer (Tang et al., 2013, 2014), so the rain-
induced roughness cannot be ignored in the calculation of sea
surface emissivity.

In Fig. 4b, the lines without symbols represent the satellite-
detected emissivity increments obtained by using the Aquarius
data and TRMM 3B42 matchup dataset. The solid line named as
Aquarius H denotes the Aquarius-detected H-polarized emissiv-
ity  increment;  dotted  line  named  as  Aquarius  V  denotes  the
Aquarius-detected V-polarized emissivity increment. This incre-
ment is determined by the emissivity observed by the outer beam
with rain minus that without rain but under the same conditions
of wind and temperature. Figure 4b shows that this emissivity in-
crement rises with the rain rate, the emissivity increment in H
polarization is larger than that in V polarization. Both solid line
and dotted line become rough like saw tooth at the high rain rate
range because of insufficient data. The increase rates in both po-
larizations are large (small) in the low (high) rain rate range. In
Fig. 4b, the lines with triangles and circles represent the emissiv-
ity increments induced by rain-related roughness spectrums 1
and 2, respectively, which are obtained using the same method
as in Fig. 4a. At first, the model outputs related to spectrum 2 are
substantially different from the satellite observations; thus, spec-
trum 2 is considered to be unsuitable for the improvement of
satellite salinity retrieval algorithm. Second, we found that the in-
creasing trend of emissivity increment calculated from the spec-
trum 1 model is similar to satellite observations. However, some
discrepancies between them still exist. This means that spectrum
1 is more suitable for the simulation of rain-induced roughness
than  spectrum  2  when  rain-induced  freshening  is  not  con-
sidered; and improvement of spectrum 1 based on the satellite
observations is still required.

To reduce the difference between the observations and mod-
el output, the coefficients of SR,peak in spectrum 1 are fitted using
the least square method. The measured emissivity increment is
averaged at a 1 mm/h interval rain rate from 0 to 25 mm/h and at
a 1 m/s interval wind speed from 0 to 25 m/s. The fitted coeffi-
cients for H and V polarizationsare different because of the differ-
ent performance between the model output and the Aquarius
data in the two polarizations. The results are:

S R ;peak = 11£ 10¡4R 0:22; in H polarization; (10)

S R ;peak = 8£ 10¡4R 0:25; in V polarization: (11)

The dots in Fig. 5 show the emissivity increment, induced by
rain and wind, in different beams as a function of wind speed and
rain  rate,  which  is  equal  to  the  satellite-observed  emissivity
minus the calm sea surface emissivity calculated from Eq. (2).
The satellite-observedemissivityincrement is derived using the
Aquarius sea surface brightness temperature and ancillary SST
data under rainy conditions from the Aquarius and TRMM 3B42
matchup dataset. In Fig. 5, the wind speed ranges from 0 to 24
m/s, the rain rate ranges from 0 to 25 mm/h, and the data are av-
eraged in every 3 m/s interval of wind speed and 1 mm/h inter-
val  of  rain  rate.  The  dots  with  different  colors  represent  the
emissivityincrements averaged at different wind speed ranges.
With the same rain rate, the emissivity increment increases as the
wind speed increases, and the increasebecomes morerapid as
the wind speed becomes larger. With the same wind speed, the
emissivity increment increases as the rain rate becomes larger.
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Fig. 5.  The emissivity increment calculated by using the Aquarius and 3B42 matchup dataset (dots) and the modified model (lines)
as a function of wind speed and rain rate. The different colors represent different wind speeds. The lines in each plot are from 1.5 to
22.5 m/s with 3 m/s bin from bottom to top.

 

The increasing speed of the emissivity increment to the rain rate
is large at a low rain rate and low speed. As the wind speeds be-
come larger, the rain roughness has less impact on the emissivity

increment. Because the matchup data are sparse at high wind
speeds and rain rates, as shown in Fig. 1, the dots in that range
show an irregular distribution.

The lines in Fig. 5 represent the emissivity increment simu-
lated by the modified model, including Eqs (10) and (11). The
model output is consistent with the Aquarius data, especially at
low and moderate wind speeds and a low rain rate. There is a
large discrepancy between the model output and Aquarius data
at high rain rates and wind speeds, which may be caused by in-
sufficient satellite data, as shown in Fig. 1b.

Table 1.  Bias and RMSE of the emissivity increment discrepancy
between the modified model output and Aquarius data

  Bias RMSE

Inner H –4.71e–4 2.13e–3

Middle H –6.91e–5 1.82e–3

Outer H 8.88e–5 1.51e–3

Inner V 9.02e–5 2.27e–3

Middle V 3.01e–4 2.04e–3

Outer V 3.40e–5 1.49e–3

 
The bias and RMSE (root mean square error) of the emissiv-

ity increment discrepancy between the model output and Aquar-
ius data are shown in Table 1. The bias between the model out-
put  and  Aquarius  data  is  approximately  1e–4,  which  is  a  very
small value. The bias of the inner beam is slightly larger than the
other beams in the H polarization, and the bias in middle beam is
slightly larger than the other beams in the V polarization. The
RMSE is slightly larger than 1e–3, which is a relatively small value

as well. The RMSE decreases from the inner beam to the outer
beam in both polarizations.

Finally, to validate the modified model while considering the
rain roughness effect, the data of Aquarius in May 2014 were col-
lected. Figure 6 provides the bias (solid lines) and RMSE (dotted
lines) between the retrieved SSS and HYCOM SSS as a function of
the rain rate (Fig. 6a) and wind speed (Fig. 6b). The lines without
dots  denote  the  bias  and  RMSE  between  the  SSS  retrieved
without considering the rain roughness effect and the SSS from
HYCOM. The lines with dots denote the bias and RMSE between
the SSS retrieved considering the rain roughness effect and the
SSS from HYCOM. In Fig. 6a, a large bias is found when the rain
effect is not considered; the bias increases with the increasing
rain rate and can be as large as 2 at high rain rates. However, the
bias  can be corrected when the rain  roughness  effect  is  con-
sidered in the retrieval model; the bias can be reduced to less
than 0.3 when the rain rate is less than 11 mm/h. The RMSE is
also reduced when the modified model is used. In Fig. 6b, the bi-
as is also smaller than when the rain roughness is not considered.
Larger  error  in  the  range of  high rain  rate  and wind speed is
found because of insufficient satellite data at that range.

In a previous study (Boutin et al.,  2014),  the rain effect on
SMOS  SSS  is  estimated  to  be  between  –0.18  and  –0.22
psu/(mm·h–1), which can cause a decrease of approximately 2 in
10 mm/hr and is consistent with the uncorrected data in this pa-
per. A two-step data processing method was developed to cor-
rect the rain-induced roughness in their study and decreased the
rain effect by only 0.01 psu/(mm·h–1) and by no more than 20% in
some extreme cases.  However,  introduction of  the  rain  wave
spectrum in this paper shows a much larger impact of the rain ef-
fect on satellite SSS, especially at low wind speeds. The bias and
RMSE can be significantly corrected by the new method.
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Fig. 6.  Bias (solid lines) and RMSE (dotted lines) between retrieved SSS and HYCOM SSS as a function of the rain rate (a) and wind
speed (b). The lines with dots are calculated considering the rain induced roughness. The lines without dots are calculated without
considering the rain effects. Here HYCOM SSS data represent generally accepted and more reliable data compared to satellite data.
The less bias between the retrieval model output and HYCOM SSS corresponds to a better model. Figure 6a shows clearly that the
bias under rain conditions considering the rain effect is very small compared to the bias without considering rain effect.

 
5  Conclusions

SSS plays a significant role in the global water cycle, and satel-
lite remote sensing helps obtain global coverage and long-term
serial SSS data. However, when there is rain, a large discrepancy
can be found between the SSS data retrieved by Aquarius and
from the HYCOM output. The discrepancy increases with an in-
creasing rain rate, which can reach as much as 2 in 25 mm/h.
Several existing studies attribute the discrepancy to rain-induced
sea surface freshness. However, the scatterometer data reveal
that rain will cause an increase of sea surface roughness, which
may raise sea surface emissivity as well as decrease the retrieved
SSS. Until now, the influence of these two phenomena on sea sur-
face emissivity and SSS retrieval has been very difficult to separ-
ate.

In this paper, rain wave spectrums are added into the Small
Slope Approximation (SSA) model to find the contribution of
rain-induced roughness to sea surface emissivity. The emissivity
generated by rain-induced roughness is larger than that contrib-
uted by rain freshening and atmospheric influence. The sea sur-
face emissivity calculated by using two models of rain wave spec-
trums is compared to satellite observations. It is found that rain
spectrum  1  is  more  suitable  for  simulation  of  rain-induced
roughness than rain spectrum 2; and further improvement of rain
spectrum 1 can be obtained based on satellite observations.

When the rain-induced roughness is considered, a modified
model of the rain wave spectrum is obtained by fitting the model
coefficients to observations from the matchup dataset of Aquari-
us and TRMM 3B42. The satellite observations and model output
with a modified spectrum show that the emissivity increment in-
duced by rain increases with the wind speed and rain rate. The
increasing speed of the emissivity increment is large at low rain
rate  and  wind  speed  and  is  small  in  high  rain  rate  and  wind
speed. The bias of the emissivity increment discrepancy between
the model outputs and Aquarius data is approximately 1e–4; the
RMSE is slightly larger than 1e–3. Finally, the model was valid-
ated by the matchup dataset in May 2014. The bias induced by
rain has been corrected and the RMSE is  also reduced to less
than 1 at a low rain rate and wind speed. Figures 5 and 6 confirm

that compared to satellite observations, the biases of sea surface
emissivity  and SSS retrieved by using the modified spectrum
model considering the rain effect are very small compared to the
biases without considering the rain effect.

Until now, the influence of rain-induced sea surface freshen-
ing on sea surface emissivity cannot be separated from rain-in-
duced roughness, so further investigation of the rain effect on SSS
retrieval is still required.
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