Determination of cosmogenic 32P and 33P in environmental samples

CHEN Min1,2, YANG Zhi1, ZHANG Lei1, QIU Yusheng1,2, MA Qiang1, HUANG Yipu1

1 College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
2 State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

Received 9 March 2012; accepted 14 May 2012

©The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2013

Abstract
Understanding phosphorus dynamics in marine environment is of great importance, and appropriate tracers for phosphorus cycling in oceans are invaluable. In this study, two methods were developed for extraction, purification, and determination of naturally occurring 32P and 33P in rainwater, marine plankton and sediments using both a low-level beta counter (LBC) and an ultra-low-level liquid scintillation spectrometer (LSS). Blanks, chemical yields and counting efficiencies were quantified for both methods. The chemical purification of 32P and 33P separated by both procedures was validated by their decay curves. The absorber thickness of aluminum for LBC was assessed as 39.2 mg/cm2. 32P and 33P specific activities in some rain samples were determined by both methods and showed good consistent results. The advantage of the LSS over the LBC is apparent in its high counting efficiency and in determining samples with high concentration of stable phosphorus. However, when measuring environmental samples with low concentration of stable phosphorus, such as rainwater, both methods can be used and each has its distinct advantage.

Key words: 32P, 33P, rainwater, plankton, sediments

1 Introduction

Phosphorus (P) is an essential nutrient for all living organisms, and controls many biogeochemical processes occurring in the biosphere. In marine environments, several studies suggest that phosphorus may limit biological production and nitrogen fixation in certain regimes (Benitez-Nelson and Karl, 2002; Planavsky et al., 2010). Phosphorus plays a significant role in marine carbon cycling, and thereby, in atmospheric CO$_2$ dynamics (Benitez-Nelson and Buesseler, 1999).

As compared with carbon or nitrogen, biogeochemistry of phosphorus is poorly understood. Most previous studies were confined to the concentration and distribution of phosphorus, providing only limited information on how P affects biological production or carbon export (Benitez-Nelson, 2000; Pan et al., 2003; Dai et al., 2007; Qi et al., 2011). Understanding P dynamics in marine environment is of great importance. However, these studies have been hampered by methodology. The appropriate tracers for P cycling in oceans are invaluable.

Twin naturally occurring cosmogenic radionuclides, 32P and 33P provide tracers for studying biogeochemistry of phosphorus in the upper ocean. Both 32P (T$_{1/2}$=14.28 d, E$_{max}$=1.71 MeV) and 33P (T$_{1/2}$=25.3 d, E$_{max}$=0.249 MeV) are produced primarily by cosmic ray interactions with atmospheric argon. Once produced, they are rapidly scavenged onto aerosols and enter the biosphere predominantly by wet deposition. Because the production rates of 32P and 33P are nearly independent of latitude in the troposphere and they have similar chemical characteristics as well as short half-lives, determination of 32P and 33P concentrations and 32P/33P ratios in wet deposition provides useful information on the transportation of air masses, penetration of stratosphere/troposphere and the residence times of aerosols (Lal et al., 1968; Rama and Honda, 1961; Walton and Fried, 1962; Luyando et al., 1970; Sanak et al., 1985; Waser and Bacon, 1994; Waser and Bacon, 1995; Benitez-Nelson and Buesseler, 1999). In addition to atmospheric production, an additional source of 32P and 33P is from spallation reactions on Cl, S, K and Ca in seawater during exposure to cosmic rays. However, this oceanic production has been estimated to be less than 5% for 32P and 1% for 33P of the local cosmogenic input that occurred at the Bermuda Atlantic Time-Series Station (Waser and Bacon, 1994). The previous studies show that 32P/33P ratios remain constant in rainwater (Waser and Bacon, 1995; Waser et al., 1996; Benitez-Nelson and Buesseler, 1999; Benitez-Nelson and Karl, 2002). After they enter marine environment, 32P/33P ratios vary due to the different decay rates of 32P and 33P. This can be used as an “internal clock” to estimate the residence times, uptake and regeneration rates and fluxes of import and export of P in various marine pools. Higher 32P/33P ratios suggest older net age of phosphorus in any particular reservoir of interest. Since the 1980s, 32P and 33P have been used as clocks to obtain the information on P cycling in rain, seawater, suspended particle and plankton (Lal et al., 1988; Waser et al., 1994; Waser and Bacon, 1995; Waser et al., 1996; Benitez-Nelson and Buesseler, 1999; Benitez-Nelson and Karl, 2002; Zhang et al., 2004).

In natural environments, concentrations of 32P and 33P are extremely low. The average activity concentrations in rainwater range from 0.2 to 6 dpm/dm3 (Lal et al., 1957; Walton and Fried, 1962; Waser and Bacon, 1995; Benitez-Nelson and Buesseler, 1998), whereas in seawater, dissolved 32P and 33P concentrations are 1000 times lower (Benitez-Nelson and Buesseler, 1998). Hence, preconcentration of 32P and 33P from environ-
mental samples is needed. For example, Fe(OH)$_3$ coprecipitation was carried out to collect phosphorus from seawater (Lai et al., 1988). Lee et al. (1992) extracted dissolved inorganic phosphorus (DIP) using the selective adsorption of DIP-molybdenum blue complex onto a cation-form acrylic fiber and the extraction of total dissolved phosphorus by Fe(OH)$_3$ impregnated acrylic fiber proved very successful. The purification procedure for phosphorus was essentially similar to those used in the earlier studies by Lai et al. (1960), and involved a series of digestion, precipitation and ion-exchange steps. Stable phosphorus was served as a yield monitor in the procedure. In order to speed up the filtration and at the same time keep good extraction efficiency, Benitez-Nelson and Buesseler (1998) used Fe(OH)$_3$-impregnated filters to replace the acrylic fiber.

Two techniques were developed to determine the activities of 32P and 33P. One was by low-level β counter (LBC) in the form of NH$_4$MgPO$_4$·6H$_2$O precipitates (Lai et al., 1988; Lee et al., 1992; Waser et al., 1994). Since the maximum energies of beta particles from 32P and 33P are different, the low-energy beta emission from 32P is easily blocked by the external absorber. Samples are counted twice by LBC: one with absorber to measure 32P only, and then without absorber to obtain the total activity of 32P and 33P. The difference between both measurements represents the activity of 33P. However, this technique was not suitable for measuring samples with high concentrations of stable P since the final counting source was thick and the self-absorption was serious (Waser et al., 1994). Recently, a new technique was developed for the measurement of 32P and 33P activities by ultra-low-level liquid scintillation spectrometry (LSS) (Benitez-Nelson and Buesseler, 1998). Activities of 32P and 33P were measured simultaneously with high efficiencies, and the concentration of stable P will not affect the detection.

In this study, the techniques for 32P and 33P determination in rainwater, plankton and sediments by LBC and LSS were developed. The detailed procedures for phosphorus collection, extraction, purification and measurement were described. Blanks, chemical yields, counting efficiencies and the ideal aluminum absorber thickness were quantified. 32P and 33P specific activities in rainwater were determined both by LBC and LSS technique and compared with each other.

2 Methods

2.1 Sample collection and pretreatment

2.1.1 Rainwater

During the period between December 2002 to April 2004, rainwater samples were continuously collected (n=44) at Xiamen University (24°26′13.17″N, 118°05′41.62″E) at a height of 20 m. Five quadrate plastic tanks with total areas of 0.20 m2 were used for rainwater collection. Soluble reactive phosphate (SRP) in random samples was measured. Our results show that the SRP concentrations (calculated by P) in rainwater varied from 0.006 to 0.024 mg/dm3 during a small rainfall event of being less than 0.9 cm and lower than the detection limit during a large rainfall event of being greater than 1.9 cm (Table 1).

Considering the low phosphate concentrations in rainwater, 10 cm2 of KI$_2$PO$_4$ (0.300 mg/cm2), calculated by P was added to serve as a carrier and a yield monitor. Rain samples were acidified with HCl to pH ~2, and equilibrated for 4–6 h. The sample solution was filtered through a Mixed Cellulose Ester (MCE) membrane with 10 μm pore-size in order to remove large impurities. Sixty to ninety milligram of Fe (FeCl$_3$ solution) was added into the filtrate and left to equilibrate for 6–12 h. Ammonium hydroxide was added slowly to precipitate Fe(OH)$_2$, which scavenges phosphorus. After standing for 24–48 h, decanting and the Fe(OH)$_2$ precipitate was separated from the supernatant by centrifugation. The precipitate was washed with Milli-Q water. This step served to pre-concentrate P from a large volume waters and separate phosphorus from potassium, sodium and other major cation and anion ions. The precipitate was then dissolved in 1–2 cm3 of concentrated HNO$_3$ to make 1 mol/dm3 HNO$_3$ solution for further separation and purification of phosphorus.

<table>
<thead>
<tr>
<th>Sampling date (y-m-d)</th>
<th>Rainfall/ cm</th>
<th>Phosphate concentration$^{1)}$/ mg/dm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-12-18</td>
<td>0.19</td>
<td>0.006</td>
</tr>
<tr>
<td>2002-12-19</td>
<td>2.73</td>
<td>b.d.</td>
</tr>
<tr>
<td>2002-12-27</td>
<td>1.97</td>
<td>b.d.</td>
</tr>
<tr>
<td>2003-01-07</td>
<td>2.80</td>
<td>b.d.</td>
</tr>
<tr>
<td>2003-03-10</td>
<td>5.40</td>
<td>b.d.</td>
</tr>
<tr>
<td>2003-04-01</td>
<td>0.12</td>
<td>0.013</td>
</tr>
<tr>
<td>2003-04-03</td>
<td>0.63</td>
<td>0.007</td>
</tr>
<tr>
<td>2004-03-03</td>
<td>0.65</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Notes: $^{1)}$ b.d. represents below detection limit.

2.1.2 Plankton

Plankton samples were collected by towing net (100 μm mesh-size) in the northern Xiamen Bay around the Guling Island (from 24°27′N, 118°01′E to 24°29′N, 118°03′E). Microscopic observation indicates that the dominant species were A. pacifica and Centropages truncatus. Plankton samples were taken back to laboratory within half an hour and further concentrated by nets with 0.45 μm mesh-size, dried at 70–80°C to obtain the dry weight. After combusted at 400–500°C for 4 h, all of the phosphorus was converted to inorganic forms. Samples were repeatedly extracted with 10–20 cm3 of concentrated HNO$_3$ in a Teflon pot by micro-wave digestion. The supernatant solution was transferred to a new Teflon beaker. The residue was rinsed with 1 mol/dm3 HNO$_3$ solution three times, and the washing solution was combined into the digestive sample. The resulting solution was heated to dryness and re-dissolved in a 1 mol/dm3 HNO$_3$ solution for further separation.

2.1.3 Sediments

Surface sediments with a depth of being less than 1 cm were collected every 4-8 m from the flood line during the ebb in the inter-tidal zone around the Xiamen Bay (24°26′N, 118°05′E). Samples were then taken back to lab and weighed, dried at 70–80°C, and combusted at 400–500°C for 4 h to convert all of the phosphorus to inorganic form. About 3–5 g of the combusted sediments was used for phosphorus extraction with the same procedure as the plankton samples. The digestive solution was converted to 1 mol/dm3 HNO$_3$ solution for further separation.

2.2 Separation and purification of phosphorus

Procedures for the separation and purification of phosphorus were modified from Waser et al. (1994) and Benitez-Nelson and Buesseler (1998). Briefly, the resulting 1 mol/dm3 HNO$_3$ solution was heated to 30–40°C and excess ammonium molybdate (0.1 g/cm3) was added. The sample solution was
stirred until a yellow precipitate of ammonium phosphomolybdate, \(\text{(NH}_4\text{)}_2\text{PO}_4 \cdot \text{(MoO}_3\text{)}_2 \), appeared. This precipitation was used to reduce the amount of heavy metals, particularly Fe, Co, Ni, Cr, Ti and Zr (Waser et al., 1994). The heating temperature was set to below 50°C, otherwise molybdcic acid may coprecipitate with Si, As and V, and disturb the further purification.

If the samples had too many metal contaminations, the precipitate was re-dissolved in concentrated \(\text{NH}_4\text{OH} \) and acidified to 1 mol/dm\(^3\) \(\text{HNO}_3 \), and ammonium phosphomolybdate was precipitated a second time. After about 1 hr, the precipitate was filtered through a MCE membrane (0.22 µm, 25 mm in diameter), washed with 1 mol/dm\(^3\) \(\text{HNO}_3 \), and then dissolved in 1:3 (v/v) \(\text{NH}_4\text{OH} \). The resulting solution was adjusted to pH ∼7 with HCl and cooled in an ice bath. An excess reagent of \(\text{MgCl}_2 \cdot \text{NH}_4\text{Cl} \) and then drops of concentrated \(\text{NH}_4\text{OH} \) were added during stirring. A white crystalline precipitate of ammonium magnesium phosphate \(\text{(NH}_4\text{)}_2\text{MgPO}_4 \cdot 6\text{H}_2\text{O} \) formed. While stirring was maintained, an excess of concentrated \(\text{NH}_4\text{OH} \) was added. The precipitate in solution was cooled in an ice bath for more than 30 min in order to ensure precipitation completely. This step was used to turn the precipitate into a form which can be dissolved in \(\text{HCl} \) for subsequent column separation.

The \(\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O} \) precipitate was filtered through a MCE membrane (0.22 µm, 25 mm in diameter) and washed with 1/3 (volume/volume) \(\text{NH}_4\text{OH} \) solution. After dissolution in 50-80 ml of 9 mol/dm\(^3\) HCl, the resulting solution was loaded on a cation resin column (100–200 mesh, 8–10 cm high) to adsorb Ca, K, Fe, Al, V, W, Zn, Sr and Ti, which interfere with the final precipitation. The resin was subsequently washed with 20–30 ml 9 mol/dm\(^3\) HCl to completely remove phosphorus. The effluent and rinses containing phosphorus were reduced to a small volume via evaporation on a hot plate. The pH was adjusted to 7 with concentrated \(\text{NH}_4\text{OH} \), and diluted to 30–40 cm\(^3\) with Milli-Q water. The resulting volume was recorded exactly for further calculation of phosphorus concentration. The following procedures were different dependent on the counting technique used.

When \(\text{32P} \) and \(\text{33P} \) were measured by LBC, two subsamples of 0.3 cm\(^3\) were removed from above solution for phosphorus determination. The remaining solution was put into an ice bath and precipitated again as described previously. The precipitate of \(\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O} \) was collected onto a pre-weighted MCE membrane (0.22 µm pore-size, 25 mm in diameter, the weight is \(W_{\text{cm}} \)), and dried until the weight was constant. It was weighed again to obtain the weight of precipitate and membrane \(W_{\text{cm}} \) for chemical yield's calculation. The membrane was sealed with tape (1.0 mg/cm\(^2\) in thickness) and determined by low-level \(\beta \) counter.

When LSS was used for \(\text{32P} \) and \(\text{33P} \) measurements, the solution was taken to dryness, dissolved in 1 cm\(^3\) Milli-Q water, and transferred to a preweighed liquid scintillation vial (the weight of the empty vial was \(W_{\text{v}1} \)). Two cubic centimeters of Milli-Q water was used to rinse the container twice and combined into the vial. The vial with solutions was then re-weighed \((W_{\text{v}2}) \). Two subsamples of 0.015 cm\(^3\) were removed for phosphorus determination using classic molybdenum blue method (Parsons et al., 1984). The vial containing sample solution was weighed again \((W_{\text{v}2}) \) in order to calculate the chemical yield. Five cubic centimeters of the cocktails (Optiphase HiSafe 3) was then added and stored in the dark for more than 10–12 h prior to LSS counting.

2.3 \(\text{32P} \) and \(\text{33P} \) measurements

2.3.1 LBC

Both \(\text{32P} \) and \(\text{33P} \) are \(\beta \)-emitters, but their maximum beta energies differ \((E_{\text{max}}=1.71\text{ MeV for } \text{32P; } E_{\text{max}}=0.249\text{ MeV for } \text{33P}) \). In this study, \(\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O} \) precipitates were counted twice by LBC (Model BH1227, Beijing Nuclear Instrument Factory): once with aluminum absorber to measure \(\text{32P} \) only, and then without absorber to obtain the total activity of \(\text{32P} \) and \(\text{33P} \). The difference between both measurements represents the activity of \(\text{33P} \). The best thickness of aluminum foils for separating the \(\beta \) emissions of \(\text{32P} \) from that of \(\text{33P} \) was ascertained by experiments.

2.3.2 LSS

\(\text{32P} \) and \(\text{33P} \) were determined simultaneously by Wallac 1220 Quantulus (Perkin Elmer Co) under the high-energy (\(\text{14C} \)) mode. For most of \(\beta \) emitters \((E_{\text{max}} > 156 \text{ keV}) \), the counting efficiency is usually higher than 95% under this mode. Quench will cause the \(\text{33P} \) and \(\text{33P} \) peaks to shift to lower energies outside the chosen energy regions of interest. In order to compensate for quench effects, the regions of interest should be adjusted by using the software of window auto-regulating under Wallac Easy View. Most of the quench was caused by residual \(\text{HNO}_3 \) in the sample, which can be avoided by carefully treatment.

2.4 Calculation of the chemical yields

For samples measured by LSS, phosphorus content \((M_{\text{LSS}}) \) after the procedure is expressed by the following equation:

\[
M_{\text{LSS}} = \frac{2m \times (W^1_{\text{v}2} - W_{\text{cm}})}{W^1_{\text{v}1} - W^2_{\text{v}1}},
\]

where \(m \) is the phosphorus content in the subsample determined by molybdenum blue method (mg P). \(W_{\text{cm}} \), \(W^1_{\text{v}1} \), \(W^2_{\text{v}1} \) represent the weight of the empty vial, the weight of the vial containing sample solution, and the weight of the vial containing sample solution after removing subsamples for phosphorus determination, respectively. The chemical yield for LSS method \((\eta_{\text{LSS}}) \) is given by:

\[
\eta_{\text{LSS}} = \frac{M_{\text{LSS}}}{I} \times 100%,
\]

where \(I \) represents the added stable phosphorus (mg P).

For samples measured by LBC, phosphorus content \((M_{\text{LBC}}) \) is expressed as:

\[
M_{\text{LBC}} = \frac{m \times V^1_{\text{v}}}{V^2_{\text{v}}},
\]

where \(m \) is phosphorus content in the subsample (mg P), \(V^1_{\text{v}} \) represents the solution volume prepared for counting source (cm\(^3\)), \(V^2_{\text{v}} \) represents the volume used for stable phosphorus determination (cm\(^3\)). The chemical yield is calculated by two methods. One is based on the change of phosphorus content during the procedure, and expressed as:

\[
\eta_{\text{LBC}} = \frac{M_{\text{LBC}}}{I} \times 100%,
\]

where \(\eta_{\text{LBC}} \) represents the chemical yield derived from the content of stable phosphorus, \(M_{\text{LBC}} \) is calculated by Eq. (3), and \(I \) is the added stable phosphorus (mg P).

The other method for estimating chemical yield is based on the weight change of \(\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O} \) precipitates during the procedure, and expressed as:

\[
\eta_{\text{LBC}} = \frac{(W^2_{\text{cm}} - W_{\text{cm}}) \times 10^5 \times M^0_{\text{cm}}}{M_{\text{NH}_4\text{MgPO}_4 \cdot 6\text{H}_2\text{O}} \times I} \times 100%,
\]
where M_p and $M_{NH_4MgPO_4}$, respectively, are molecular weight of stable phosphorous and NH$_4$MgPO$_4$·6H$_2$O, respectively. W_{mem} is weight of the membrane containing precipitates (mg), and W_m is the weight of membrane (mg).

2.5 Blank determination

To determine the blanks of the procedures, 10 cm3 of KH$_2$PO$_4$ solution (0.300 mg/cm3) was used to prepare the counting source based on the above procedures. Five blank sources were determined by LBC, and nine were determined by LSS. The difference between the blank sources and the inherent backgrounds of the instruments was used to calculate the net blank counting rates.

2.6 Determination of the counting efficiency

Counting efficiencies of LSS and LBC for 32P and 33P were determined by counting standards with known activities of 40K (E_{max}=1.32 MeV) and 147Pm (E_{max}=0.249 MeV), which have maximum beta energies close to those of 32P (E_{max}=1.71 MeV) and 33P (E_{max}=0.249 MeV).

For the determination of the counting efficiency by LSS, 0.117 g of KCl (14.75 Bq/g) was put into a counting vial, dissolved in 3 cm3 of Milli-Q water. Five cubic centimeter of Optiphase HiSafe 3 cocktails were added, and stored in the dark for more than 6 h. 40K activities were measured by LSS. Similarly, a known activity of 147Pm standard was counted by LSS for the determination of 33P counting efficiency (Benitez-Nelson and Buesseler, 1998).

For the determination of the counting efficiency by LBC, 0.940 cm3 of 32P standard solution (32P-Na$_3$PO$_4$, (837.7±2.6) Bq/cm3) was dried on a stainless planchet until the weight was constant. 32P activity was measured by LBC with and without Al absorbers. 147Pm was also used as the substitute for 33P. A known activity of 147Pm standard solution was dried on a stainless planchet until the weight was constant. 147Pm activity was measured by LBC with and without Al absorbers.

2.7 Purity validation of 32P and 33P

To validate the purity of 32P and 33P in our counting sources, two rain samples are counted at different time to obtain the decay curves of 32P and 33P by both LSS and LBC. The estimated half-lives of 32P and 33P from the curves were compared with their reference values.

3 Results and discussion

3.1 Blanks

The count rates of blank sources and the inherent backgrounds of both instruments were given in Table 2. For LSS, the averaged counting rate of the nine blank sources was (2.28±0.03) cpm, and the inherent background of the LSS was (1.97±0.08) cpm (Table 2). For LBC, the averaged counting rate of the five blank sources was (1.20±0.01) cpm, and the inherent background of the LBC was (1.17±0.03) cpm (Table 2). The above results indicate that the net blank of LSS was higher than that of LBC. However, it is compensated by high counting efficiency of the LSS.

Table 2. Net count rates of blank sources and inherent backgrounds of LBC and LSS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Net count rates by LBC/cpm</th>
<th>Net count rates by LSS/cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blank sources</td>
<td>Instrument background</td>
</tr>
<tr>
<td>BC1</td>
<td>1.19±0.03</td>
<td>1.17±0.03</td>
</tr>
<tr>
<td>BC2</td>
<td>1.21±0.03</td>
<td>1.17±0.03</td>
</tr>
<tr>
<td>BC3</td>
<td>1.21±0.03</td>
<td>1.17±0.03</td>
</tr>
<tr>
<td>BC4</td>
<td>1.19±0.03</td>
<td>1.17±0.03</td>
</tr>
<tr>
<td>BC5</td>
<td>1.20±0.03</td>
<td>1.17±0.03</td>
</tr>
<tr>
<td>BS1</td>
<td>2.38±0.09</td>
<td>1.97±0.08</td>
</tr>
<tr>
<td>BS2</td>
<td>2.48±0.09</td>
<td>2.04±0.09</td>
</tr>
<tr>
<td>BS3</td>
<td>2.16±0.09</td>
<td>2.04±0.09</td>
</tr>
<tr>
<td>BS4</td>
<td>2.37±0.09</td>
<td>1.97±0.08</td>
</tr>
<tr>
<td>Average</td>
<td>1.20±0.01</td>
<td>1.17±0.03</td>
</tr>
</tbody>
</table>

The relative large variation of the blank sources by LSS was related to the counting mode. Benitez-Nelson and Buesseler (1998) suggested that ~32% of the blank counts of LSS was caused by the photons produced from the interaction between high energy cosmic radiation and cocktails, and ~68% was produced from the interaction between cosmic radiation and phototlectric amplifier or vial. In our study, the blank sources were determined every time before sample measurements in order to eliminate the instability of LSS blanks.

The net blanks of both procedures can be estimated by the counting efficiency (see Section 3.2) and the difference of the count rates between blank sources and inherent background of the instrument. The estimated net blanks of the procedures were 0.08 dpm and 0.32 dpm for LBC and LSS, respectively. These activities contributed only less than 7% to most of our measured environmental samples, including rainwater, plankton, and sediments. The low net blanks suggested that disturbance by reagents and vessels was ignored in our procedures.

3.2 Counting efficiency

The counting efficiencies for 32P and 33P by LSS were assessed as 92.5% and 92.3%, respectively (Table 3), indicating the LSS was suitable for low-energy beta nuclides measurements, such as 33P and 3H.

With and without Al absorbers, the counting efficiencies for 32P by LBC were 31.9% and 32.9%, respectively (Table 3). The counting efficiency of 32P was not reduced significantly by Al absorbers due to its high beta energy. In contrast with 32P, the counting efficiency of 33P was low and significantly affected by the Al absorbers. The counting efficiency of 33P decreased from 6.1% to 1.2% with the Al absorber occurrence (Table 3). The low counting efficiency of 33P induced a large uncertainty of 33P activity. The pathways to reduce the counting errors included prolonging the counting times, increasing the sample volumes, or reducing the counting source thickness. Nevertheless, LBC was not suitable for 33P determination in plankton samples since the high stable phosphorous would cause serious self-absorption of
β emission by a thick counting source. Waser et al. (1994) also determined the counting efficiencies of 32P and 33P by LBC as 25%–50% (32P) and <20% (33P), respectively. Obviously, the low counting efficiency of 33P was the major disadvantage of LBC compared with LSS.

Table 3. The counting efficiencies of 32P and 33P by LBC and LSS

<table>
<thead>
<tr>
<th>Instrument</th>
<th>32P</th>
<th>33P</th>
<th>31Pm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Al-absorber</td>
<td>Without Al-absorber</td>
<td>With Al-absorber</td>
</tr>
<tr>
<td>LBC</td>
<td>31.8±0.2</td>
<td>32.6±0.2</td>
<td>1.17±0.01</td>
</tr>
<tr>
<td>LSS</td>
<td>92.5±0.4</td>
<td>92.3±0.0</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Chemical yields

3.3.1 LBC

The chemical yields of phosphorus in 21 rain samples were estimated by two methods, i.e., the content change of stable phosphorus (η_{BP}) and the weight change of NH$_4$MgPO$_4$·6H$_2$O precipitate (η_{MW}). η_{BP} ranged from 41.9% to 95.6% with an average of 70.7%, while η_{MW} ranged from 39.4% to 98.5% with an average of 70.3% (Fig.1). For comparison, Benitez-Nelson and Buesseler (1998) estimated η_{BP} as 31.6%–90.8% (averaging 86.6%) during their procedure. Lal et al. (1957) estimated η_{MW} as 50%–60%. Our chemical yields were consistent with these studies.

Our results show that the chemical yields obtained by the stable phosphorus (η_{BP}) were consistent with those obtained by the NH$_4$MgPO$_4$·6H$_2$O precipitate (η_{MW}), indicating both methods are suitable for chemical yield estimation during the separation and purification (Fig.1). In fact, both methods were used by researchers before, for example, Waser et al. (1996) used η_{BP} to calculate 32P and 33P activities in rainwater, suspended particles and planktons. Lal et al. (1957) used η_{MW} to calculate 32P and 33P activities in rainwater.

Although coincident chemical yields were obtained by both methods, each method has its disadvantage. η_{BP} obtained by the content change of stable phosphorus ignored phosphorus loss in the last step for NH$_4$MgPO$_4$·6H$_2$O precipitation. This loss was evaluated as 1%–7% (Table 4), contributing a little to the whole chemical yields. η_{MW} represents the entire procedure, but it is difficult to accurately control the degree of NH$_4$MgPO$_4$·6H$_2$O drying. An excessive drying would result in an uneven surface of the counting source and a decrease of the counting efficiency, while an insufficient drying would result in the residual of crystal water in the precipitate and an overestimation of chemical yield.

![Fig.1. Chemical yields calculated from stable phosphorus (η_{BP}) and precipitate weight (η_{MW}) in rainwater samples.](image)

Table 4. The chemical yield of each step in the procedure for phosphorus separation

<table>
<thead>
<tr>
<th>Step</th>
<th>Chemical yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(OH)$_3$ co-precipitation</td>
<td>91.0</td>
</tr>
<tr>
<td>Centrifugal</td>
<td>96.1</td>
</tr>
<tr>
<td>(NH$_4$)$_2$PO$_4$·(MoO$_3$)$_2$ precipitation</td>
<td>92.4</td>
</tr>
<tr>
<td>NH$_4$MgPO$_4$·6H$_2$O precipitation</td>
<td>93.1</td>
</tr>
<tr>
<td>Dissolved in 9 mol/dm3 HCl</td>
<td>100</td>
</tr>
<tr>
<td>Separation and purification by cation exchange column</td>
<td>99.2</td>
</tr>
</tbody>
</table>

In order to understand the phosphorus loss in each step in our procedure, the chemical yield of each step was determined by measuring the stable phosphorus in two rainwater samples. The chemical yields in all steps were greater than 92% except the Fe(OH)$_3$ precipitation (Table 4). The Fe(OH)$_3$ precipitation caused a major loss of phosphorus in our procedure (Table 4). The low chemical yield during Fe(OH)$_3$ precipitation was ascribed to the incomplete carry of phosphorus by Fe(OH)$_3$ precipitates from large volume waters and the adsorption of precipitates to the containers, just like that of thorium isotopes (Zhang et al., 2005). For comparison, Lal et al. (1988) reported an extraction efficiency of dissolved inorganic phosphate by Fe(OH)$_3$ co-precipitation from large volume of seawater as being greater than 90%.

3.3.2 LSS

The chemical yields (η_{BM}) of phosphorus for 26 plankton samples ranged from 46.7% to 97.0% with an average of 77.7% (Fig. 2), and those for 13 rainwater samples ranged from 34.8% to 95.5% with an average of 70.8% (Fig. 3). The yields for rain samples were slightly lower than those of plankton samples due to the Fe(OH)$_3$ co-precipitation. Using the averaged yields of rain and plankton samples, the chemical yield of phosphorus in the Fe(OH)$_3$ co-precipitation step was estimated as 91% (=70.8/77.7), coincided well with the above results in Table 4.
related to the half-thickness \((x_{1/2})\) of an absorber as:

\[
m_{\mu} = \frac{\ln 2}{x_{1/2}}.
\]

(7)

The relationship between the net count rates of \(^{32}\text{P}\) and \(^{14}\text{Pm}\) (substitute for \(^{32}\text{P}\)) and the Al absorber thickness is shown in Fig.4. The net count rates of \(^{32}\text{P}\) decreased much slower than that of \(^{14}\text{Pm}\) with the increasing Al thickness, which is related to the difference of their maximum energy of beta particles. Based on the absorption curves we obtained, the half-thickness of Al absorbers were estimated as 333 mg/cm² for \(^{32}\text{P}\) and 14.7 mg/cm² for \(^{14}\text{Pm}\), respectively, indicating that a thin absorber would block most of the beta radiation from \(^{14}\text{Pm}\), but a few from \(^{32}\text{P}\). In this study, a thickness of 39.2 mg/cm² of aluminum foils was chosen to block the beta particles from \(^{32}\text{P}\). Under this condition, 85% of the beta particles from \(^{14}\text{Pm}\) was block and only 8% for \(^{32}\text{P}\). The aluminum thickness used in our study was larger than that reported by Waser et al. (20 mg/cm², 1994), suggesting the different backgrounds between both beta counters.

3.4 The thickness of Al absorbers for \(^{32}\text{P}\) and \(^{33}\text{P}\) determination by LBC

Al absorbers were used to separate beta particles from \(^{32}\text{P}\) and \(^{33}\text{P}\) due to their large energy difference when measured by LBC. The transmission of electrons through a source was found experimentally well by the exponential absorption law for beta particles of a given maximum energy (Friedlander et al., 1981). The transmission of radiation \((I)\) through the absorbing materials is given by:

\[
I = I_0 e^{-\mu x},
\]

where \(I_0\) is the intensity of a source with no external absorber, \(\mu\) is the mass absorption coefficient (cm²/mg), and \(x\) is the absorber thickness (mg/cm²). The mass absorption coefficient is

Table 3. \(^{32}\text{P}\) and \(^{33}\text{P}\) specific activities in rain samples determined by LBC and LSS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Date (y-m-d)</th>
<th>Volume/dm³</th>
<th>Yield /%</th>
<th>(^{32}\text{P}/\text{dpm-dm}^{-3})</th>
<th>(^{33}\text{P}/\text{dpm-dm}^{-3})</th>
<th>(^{32}\text{P}/^{33}\text{P})</th>
<th>LSS</th>
<th>LSS</th>
<th>LSS</th>
<th>LSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>2003-05-14</td>
<td>12.6</td>
<td>79.0</td>
<td>0.64±0.22</td>
<td>0.66±0.01</td>
<td>0.71±0.02</td>
<td>0.76±0.01</td>
<td>0.90±0.31</td>
<td>0.87±0.01</td>
<td>0.82±0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.6</td>
<td>81.9</td>
<td>—</td>
<td>0.09±0.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R2</td>
<td>2003-06-11</td>
<td>29.6</td>
<td>22.6</td>
<td>0.20±0.01</td>
<td>0.25±0.01</td>
<td>0.50±0.12</td>
<td>0.51±0.12</td>
<td>0.10±0.02</td>
<td>0.90±0.12</td>
<td>0.78±0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.4</td>
<td>34.8</td>
<td>0.09±0.13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

LSS has obvious advantages over LBC in \(^{32}\text{P}\) and \(^{33}\text{P}\) measurements. \(^{32}\text{P}\) and \(^{33}\text{P}\) were counted simultaneously with high efficiency by LSS. In addition, the peak spectrum obtained by LSS can be used to judge whether the sample was contaminated by other beta emitters. As shown in Fig.5, \(^{32}\text{P}\) and \(^{33}\text{P}\) formed individual peak at different energy, indicating no other beta contamination in this rain sample. The overlap between both peaks was corrected by Cerenkov counting, that is, the sample was de-
termed firstly without adding cocktails to obtain the Cerenkov radiation of 32P and these Cerenkov counts were used to correct 32P counts after cocktail adding. Our results show that ~7.5% of 32P activity was falling in the 32P regions and ~7.7% of 33P activity was falling in the 33P regions.

![Fig.5](image_url) The spectrum of 32P and 33P from a rain sample measured by LSS.

3.6 Purity validation

The net count rates with and without Al absorbers measured by LBC are shown in Fig.6 for a rain sample. With the Al absorbers, the half-life of 32P calculated from the regression equation was (14.59±0.37) d, well consistent with the reference value (14.28 d). Without the absorber, the half-life including 32P and 33P activities was estimated as (15.68±0.73) d, fell into the range between 32P (14.28 d) and 33P (25.3 d).

The net count rates of 32P and 33P measured by LSS are shown in Fig.7 for a rain sample. The estimated half-lives based on the decay curves were (16.90±2.89) d and (27.72±4.44) d for 32P and 33P, respectively, consistent with the reference values (14.28 d and 25.3 d for 32P and 33P respectively) within the uncertainty.

The above results suggest that our procedure was suitable for phosphorus separation and purification. The contamination by other radionuclides such as 210Pb, and 210Bi was eliminated by this procedure.

![Fig.6](image_url) The decay curves of 32P and 33P from a rain sample measured by LBC.

3.7 32P and 33P activities in rainwater: comparison between LSS and LBC

32P and 33P in two rain samples were determined contemporarily by LSS and LBC, and used to evaluate both methods. The specific activities of 32P and 33P obtained by LSS and LBC methods were consistent within uncertainty (Table 5). For example, 32P and 33P specific activities for RI sample were (0.71±0.02) dpm/dm3 and (0.64±0.22) dpm/dm3 respectively obtained by LBC, while they were (0.76±0.01) dpm/dm3 and (0.66±0.01) dpm/dm3 respectively by LSS (Table 5). All of the 32P and 33P specific activities were within the previously reported range for rainwater (0.15–4.10 dpm/dm3 and 0.14–3.27 dpm/dm3 for 32P and 33P respectively) (Waser and Bacon, 1995; Benitez-Nelson and Buesseler, 1998; Benitez-Nelson and Bues-
seler, 1999; Benitez-Nelson and Karl, 2002). Although the data obtained by both methods were consistent, the counting errors by LBC were significantly larger than those by LSS.

4 Conclusions

Methods were developed for the collection, purification and measurements of natural occurring 32P and 33P by LSS and LBC. The advantage of LSS over LBC for 32P and 33P measurements was apparent in determining samples with high stable phosphorus. However, both methods were suitable for samples with low stable phosphorus, and each has its distinct advantage. The advantage of LBC method includes: (1) stability of blanks and less affected by environmental factors; (2) avoidance from the quench correction and the ascertainment of interest regions in analysis of spectrum. The advantage of LSS method includes: (1) high counting efficiency, and the resultant small error of counting; (2) accuracy of the chemical yield obtained by stable phosphorus measurement; (3) 32P and 33P were determined simultaneously; and (4) no influence by the amount of stable phosphorus. The methods developed here can be applied to environmental samples, including rainwater, seawater, suspended particles, plankton and sediments.

References

