Measurements of suspended particulate matter with laser in-situ scattering and transmissometry in the Jiaozhou Bay in China

WEI Jianwei¹², SHI Xuefa¹² *, FANG Xisheng¹, ZHANG Weibin¹

1. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
2. Key Laboratory of Marine Sedimentology and Environmental Geology of State Oceanic Administration, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China

Received 29 January 2006; accepted 10 July 2006

Abstract

A laser in-situ scattering and transmissometry probe (LISST – 100) was used to estimate the spatial variations of suspended particle (aggregate) distribution, volume concentration and beam attenuation in the Jiaozhou Bay, Qingdao, China on 18 July 2003. One study site was located at the mouth (Sta. J1) with the other being within the inner bay (Sta. J2). Measurements of total suspended matter (TSM) and chlorophyll fluorescence and sampling of bottom sediments were carried out simultaneously. On the basis of the field data, the in-situ particle effective density, settling velocity and flux, and particle projected surface area (PSA) were estimated. The results demonstrate that both profiles have similar particle size distributions from surface to bottom within the water columns. Mean particle diameters for Stas J1 and J2 are 38 ~ 74 and 1 ~ 20 μm, respectively. Particles within these ranges dominate over the particulate components. Suspended particle volume concentrations increase with water depth with spikes near the bottom. At Sta. J1 the mean size of bottom sediments and those of suspended particles at 10.8 m below the water surface are almost the same as well as their size distributions. This observation suggests that a special affinity exists between bottom sediment and suspended particles. In addition, the estimates show that the effective density, settling velocity and flux are higher in the inner bay. Beam attenuation coefficient correlates well with the volume concentration positively. It is inferred that the optical scattering was mostly caused by 1 ~ 250 μm components among which the particles finer than 20 μm dominate the beam attenuation. The PSA appears a proxy for the leaving reflectance estimation.

Key words: suspended particle, size distribution, beam attenuation, LISST – 100, Jiaozhou Bay

1 Introduction

Knowledge of suspended particle size and distribution is the key elements for better understanding the sediment transport processes (Wang et al. 2004), primary production (Ning et al. 2004), water quality controlling and pollution prediction (Burton et al. 1993, Yang et al. 2004) and even the water color remote sensing (Zhang et al. 2005) in the coastal waters. For many years the determination of the suspended particle parameters has been a routine of oceanography and environmental evaluation (Sun et al. 2003). However, it cannot be completely ignored that some of the particles exist actually as aggregates (Trent et al. 1978, Bale and Morris 1986, Eisma et al. 1986) the structures...
of which are so loose and fragile that they are subject
to breakup under ambient stress fields for example
turbulence. According to Gibbs 1981, 1982, and
Gibbs and Konwar 1982, 1983 the traditional
methods of water sampling filtering and even subsequent
particle analyzing processes would definitely
change the aggregate sizes and modalities. Conse-
sequently measurements with these methods do not
describe the in situ particle aggregate sizes ade-
quately. This poses some problems for the accurate
estimation of grain sizes. To avoid those possible er-
rors scientists nowadays have been endeavoring to
develop and improve the in situ measuring systems
for suspended matter sizes such as video camera
system Sternberg et al. 1999 and laser diffraction
technologies Agrawal and Pottsmith 1994
Gentien et al. 1995. It should be noted that Laser
In-situ Scattering and Transmissometry LISST –
100 is actually the first multi-parameter underwater
particle laser sizer in the world Agrawal and Pottsmith 1994 and it can determine the beam attenuation volume concentration and particle spectrum at the same time. With the state-of-the-art commercial measuring system it has become possible to measure simultaneously the parameters of particles in an almost non-intrusive manner Mikkelsen and Pe-
Mikkelsen et al. 2005. In the past several years domestic researchers have begun to focus on the application and analysis of in-situ size measurements Lan et al. 2004 Cheng et al. 2005.

The Jiaozhou bay is a typical tide-controlled
and semi-enclosed body of water lying south of the
Shandong Peninsula in China. This area is known as
the largest natural harbor with fast-developing
tourism and booming light industries. As ECCB
1993 reported city garbage and pollutants were
discharged into the small bay as well as modern
suspended particles from the seabed and rivers near-
by and also they vary with seasons and localities
Zhang 2000. As early parts of suspended particle
dynamics in coastal waters a set of LISST – 100
system was deployed for evaluation in the Jiaozhou
Bay in July 2003. Both in situ suspended particle
size data and beam transmission data were obtained
for the first time. It is shown how the in situ particle
sizes vary with the water depth and how it is possible
to estimate the settling velocities and fluxes with the
LISST – 100 in this study. What is more the beam
attenuation specifically due to particles and their PSA
was analyzed. And it indicates the perspectives of
LISST – 100 in the field of particle dynamics research
and optical oceanography study in coastal waters.

2 Materials and methods

On 18 July 2003 the underwater in situ parti-
cle measurements were carried out at Stas J1 and J2
in the Jiaozhou Bay. Station J1 36° 0. 918’ N
120°15. 714’ E is located in the outer bay a new
harbor with a water depth of 13 m and restricted
by a narrowing entrance about 3. 1 km wide while
Sta. J2 lies at the head of inner bay 36°8. 958’ N
120°16. 248’ E which is about 6 m deep Fig. 1.
The fieldwork occurred during the high tide pe-
riod with force 3 wind.

The LISST – 100 used the small angle forward
diffraction principle Agrawal et al. 1991 to
determine the size of suspended particles and the beam
attenuaiton. Small-angle scattering 0. 05° ~ 5° in
case of LISST – 100 type B in this paper is relatively
insensitive to particle composition and the size
distribution measurements are robust and do not
require particle refractive index. The instrument
used in this paper has a 5 cm optical path and the
laser wavelength is 670 nm. A detailed description
of the design and operational principles of LISST –
100 can be found in Agrawal and Pottsmith 1994 or
you may refer to the website of Sequoia Scientific
Inc. Sampling was carried out with a frequency of 1.1 Hz. The particle size distribution data were stored in 32 logarithmically spaced size classes in the range of $1.25 \sim 250 \mu m$. An SBE CT sensor was also interfaced with LISST - 100B from which the water temperature and conductivity could be determined simultaneously.

Before deployment the background scattering calibration was carried out with distilled water and compared with the factory background values. If not acceptable rinse the optical lens very carefully and another background testing should be repeated until satisfying results come out. Once retrieved the data were downloaded and then processed into readable ASCII optical scattering and transmission data with LISST software Agrawal and Pottsmith 2000. While profiling water samples were taken with Niskin sampler and then suction-filtered onto pre-weighted Whatman GF/F filters with a nominal retention diameter of 0.7 μm. Upon returning to the onshore laboratory the filters were oven-dried at 60°C and weighted with an accuracy of 0.1 mg. The total suspended matter TSM could be estimated by subtracting the blanks. Besides the chlorophyll a fluorescence was profiled with YSI multiparameter sonde by the scientists on board.

3 Results

3.1 Particle size distributions

Particle size measuring is one of the fundamental functions of LISST - 100. Using this system 32 logarithmically spaced sizes for Stas J1 and J2 were obtained in the Jiaozhou Bay. Station J1 has the similar unimodal particle size spectra with a mode around $32 \mu m$ see Figs 2a and b. For Sta. J2 the size spectra at 0.25, 1.1 and 2.9 m water deep show an identical trend with a common fine-grained end and a unimode around $32 \mu m$ see Fig. 2c. And at 4.0 and 4.5 m of the water column at Sta. J2 the size spectra featured a unimode around $80 \mu m$ see Fig. 2d.

3.2 Vertical variations in the water column

One to 250 μm suspended particle volume concentration c_v was obtained by summing all the volume concentrations for 32 size classes divided by the instrument-dependent calibration constant 4 700 in this case. The particle concentration in the surface waters of Sta. J1 is 17 μL/L and it sharply increases to 34 μL/L at the bottom. For Sta. J2 the surface volume concentration is about 37 μL/L. And the volume concentration in the waters of 4.5 m is around 70 μL/L approximately twice that in the surface water. In the deeper waters the suspended particle concentration is as high as about 150 ~ 230 μL/L. It indicates that the J2 profile is much more turbid than J1 especially within the bottom layer. The beam attenuation coefficient c varies
Fig. 2. Variations of suspended particle spectra for the two sites in the Jiaozhou Bay. a and b are the particle size spectra Sta. J1 and c and d show the particle size spectra Sta. J2. \(c_i \) is the volume concentration and \(d \) is the particle size.

with the particle volume concentrations [Fig. 3]. And the strongest attenuation [25 m\(^{-1}\)] could be found at the bottom waters.

4 Discussion

The system used in this paper is sensitive to the particles within 1 ~ 250 \(\mu \text{m} \) and the scattering information can only come out within this range. As for those aggregates or detrital particles larger than 250 \(\mu \text{m} \), their diffraction information would affect the particle distribution, resulting in the "rising tail" at the coarser end of the size spectra. From the foregoing field analysis [Mikkelsen, 2002a; McCandless et al., 2002; Mikkelsen et al., 2005; Voulgaris and Meyers, 2004], the "rising tail" was a common phenomenon and would not evidently affect the rigor of the data. In the natural waters, most of the detritus [organic/inorganic] and the phytoplanktons exist in the range of 0.1 ~ 250 \(\mu \text{m} \) [McC-...Cave, 1984]. In this sense, the in situ particle scattering information determined by LISST – 100B...
would be reliable to interpret the particle distribution. And it is noted that all the discussions of this paper only referred to the particles within the range of 1 ~ 250 μm.

4.1 Suspended particle compositions

The suspended particle spectra can be used to trace the particle sources Kurashige and Fusejima 1997. Particles with diameters of 1 ~ 20 μm dominate the spectra of J1 which account for about 34.2% and 29.5% for the surface 1.7 m waters and mid-depth 7 m waters respectively and increase to 40.6% at the bottom layer 10.8 m. At Sta. J2 fine particles of 1 ~ 20 μm in surface 0.25 m and bottom 4.4 m waters account for approximately 34.2% and 29.4%. Very similar size spectra can be found in both profiles which indicates the possibly same particle sources.

The particle sizes of J1 are coarser than those of J2 and the mean sizes d_{m} in the surface waters are much coarser than those in the bottom waters for both profiles Table 1. Compared with previous reports it is evident that the in-situ particle size is larger than that from traditional methods. According to the laboratory analysis with Gilas 940L laser particle size Wang et al. 1999 for example the suspended particle size was found less than 19 μm the median size was about 1.8 μm and the fine particles of less than 3.6 μm dominate ~ 65%. Such differences between both kinds of results can be attributed to the mechanical breakage. As a result the in-situ particle size data actually are covering more realistic environments. In view of biological oceanography however living biomass dead bodies and detritus and fecal pellets could contribute to the particle variability. Large particles aggregates would come into being in the upper waters which generally have high production.

Table 1. Parameters of the in-situ profiling measurements in the Jiaozhou Bay

<table>
<thead>
<tr>
<th>Station</th>
<th>h/m</th>
<th>c_{tot}/mg·dm$^{-3}$</th>
<th>c_{p}/μL·L$^{-1}$</th>
<th>d_{m}/μm</th>
<th>c_{s}/m$^{-3}$</th>
<th>c_{f}/m$^{-3}$</th>
<th>A/×10$^{-3}$m$^{-2}$·m$^{-3}$</th>
<th>$\Delta\rho$/kg·m$^{-3}$</th>
<th>w_{s}/mm·s$^{-1}$</th>
<th>c_{chla}/mg·m$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>1.7</td>
<td>23.5</td>
<td>17.95</td>
<td>6.13</td>
<td>58.1</td>
<td>3.92</td>
<td>3.542</td>
<td>1.709</td>
<td>1309</td>
<td>2.400</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>34.2</td>
<td>18.49</td>
<td>5.46</td>
<td>62.9</td>
<td>6</td>
<td>2.946</td>
<td>1.479</td>
<td>1850</td>
<td>3.977</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>40.1</td>
<td>32.87</td>
<td>13.33</td>
<td>38.3</td>
<td>3.33</td>
<td>7.477</td>
<td>3.648</td>
<td>1220</td>
<td>0.972</td>
</tr>
<tr>
<td>J2</td>
<td>0.25</td>
<td>15.2</td>
<td>37.74</td>
<td>12.89</td>
<td>74.0</td>
<td>8.32</td>
<td>7.943</td>
<td>4.084</td>
<td>403</td>
<td>1.199</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>24.2</td>
<td>70.46</td>
<td>20.69</td>
<td>73.0</td>
<td>7</td>
<td>11.37</td>
<td>6.082</td>
<td>343</td>
<td>2.58</td>
</tr>
</tbody>
</table>

Notes c_{tot} is total suspended matter c_{p} attenuation coefficient resulted from particles A projected surface area $\Delta\rho$ effective density w_{s} settling velocity and c_{chla} chlorophyll a concentration.

One surface sediment sample from Sta. J1 was also analyzed with the Malvern 2000 laser sizer to compare with the suspended particles. One part was dealt with H$_2$O$_2$ to remove the organic components while the other was analyzed without any treatment. The results show that the particle diameters for bottom sediments are 0.3 ~ 200 μm. And the organic matter is quantitatively negligible see Fig. 4. The integrated components for 0.3 ~ 1.25 μm size ranges account for 5% 48% and 6% of bulk sediment samples respectively. The shape of size spectrum for the bottom sediment is comparative to that of suspended particles. The mean grain size of bottom sediment is 35.86 μm a little finer than suspended particles 38.3 μm. From the above analysis an affinity
between suspended matters and bottom sediments could be anticipated.

Fig. 4. Particle size distribution for the surface sediment and suspended matter of 10.8 m water depth for Sta. J1. The surface sample was obtained with clam grabber and only the upper 2 cm sediments were used.

4.2 Estimation of settling velocity

The settling velocity of suspended matter in the bay is mainly controlled by aggregates (Van Leusen, 1988). In this case the effective density \(\Delta \rho \) for aggregates can be derived by Eq. 1

\[
\Delta \rho = \rho_s - \rho_w = \frac{c_{\text{tsm}}}{c_V} \tag{1}
\]

where \(\rho_s \) and \(\rho_w \) are densities of suspended particles and seawater and \(c_v \) values come from LISST - 100 profiling data (see Table 1). Regarding the particle mean sizes as true particle diameters the Stokes’ law could yield the aggregate settling velocity

\[
w_s = \frac{gd_0}{18 \eta} \rho_s - \rho_w \tag{2}
\]

where \(g \) is the gravitational acceleration \(9.8 \text{ m/s}^2 \) was adopted here \(\eta \) is the coefficient of viscosity \(1.002 \times 10^{-3} \text{ N·s/m}^2 \) was adopted in this case \(d_0 \) and \(d \) is the particle size. Furthermore, the vertical flux could be derived from Eq. 3

\[
Q_s = w_s c_{\text{tsm}} \tag{3}
\]

where \(Q_s \) is the vertical particle fluxes within the water column. From these estimations the flux in the surface waters of J1 is about 0.175 kg \(\text{m}^{-2} \cdot \text{a}^{-1} \) while 0.121 kg \(\text{m}^{-2} \cdot \text{a}^{-1} \) at the bottom of water column. The flux across the water surface of J2 is about 0.057 kg \(\text{m}^{-2} \cdot \text{a}^{-1} \).

LISST - 100 has the ability not only to measure the larger aggregates but also to detect the smaller particle or single mineral. Strictly speaking what Eq. 1 provides is not the real effective densities for the aggregates but the approximate estimation of the mean densities. Even though the estimations in this paper could still be used to quantify the variations of density (Mikkelsen and Pejrup, 2000). For example, the effective density of J1 is about 1 200 ~ 1 720 kg/m\(^3\) which is much higher than 500 ~ 900 kg/m\(^3\) the maximum effective density as Ten Brinke (1994) and Fennessy (1994) reported. These possible errors could be ascribed to the different compositions of particles for example the relative concentration of aggregates and single particles in the ambience. Biomass abounds in the inner bay where effective densities vary from 343 to 403 kg/m\(^3\) very close to the values of Ten Brinke (1994) and Fennessy (1994).

The particle settling velocities of J1 are about 0.97 ~ 3.98 mm/s. Both the settling velocity and flux in the inner bay are smaller than those in the outer bay (see Table 1). It is necessary to point out that Stokes’ law should only be used in the static environments i.e. under the condition of Reynold’ s number \(Re \) less than 1. So the settling velocities in this paper are not the real values but an approximate calculation.

4.3 Analysis of beam attenuation

Beam transmission \(\tau \) % could be determined by the LISST - 100B optical detector as described by Agrawal and Potts smith (1994). With Eq. 4 the transmission could be converted into the beam attenuation coefficient \(c \)

\[
c = - \frac{1}{0.05} \times \ln \tau \tag{4}
\]
where 0.05 m is the optical path. Many factors would affect the beam attenuation. For example, the variation of beam attenuation coefficient would contribute to the particle size distribution. Baker and Lavelle (1984) and Kitchen et al. (1982) as well as particle concentration. These data show that beam attenuation coefficient correlate very well with the 1 ~ 250 μm volume concentration for the 1 ~ 250 μm size and the 1 ~ 20 μm particle volume concentration with the square r^2 of correlation coefficient of 0.92 and 0.98 respectively (Fig. 5). It is inferred the 1 ~ 250 μm particle scattering is responsible for the beam attenuation while those particles larger than 250 μm are negligible for the beam attenuation coefficient. The dry weight of suspended matters does not exhibit any clear relationships with Beam c in the Jiaozhou Bay (Fig. 5) which is quite different from the previous observations (Qin et al. 1986; Ma and Qian 1995). This abnormality goes to several reasons. First, the spatial variations would be the foremost one. The measuring volume of LISST – 100 is about 1.5 mL laser beam cross section multiply optical path while TSM was determined with 1 000 mL water samples. Second, the time lag between water sampling and optical profiling would contribute to the errors. Besides, Jiaozhou Bay is characterized by low turbidity and abundant organic matters so the in-situ aggregation and disaggregation of the particles would also be responsible for the variations of particle density.

The total beam attenuation coefficient is generally divided into three parts: attenuation c_w by seawater absorbance a_{cdom} by CDOM chromophoric dissolved organic matter and attenuation c_p by particles:

$$c = c_w + a_{cdom} + c_p$$
where the beam attenuation coefficient by sea water at 670 nm is almost a constant\footnote{Kitchen et al. \cite{1982}}. Pak et al. \cite{1988} and a value of 0.370 m\(^{-1}\) was adopted in this paper. And parameterizations of CDOM absorption coefficient\footnote{Forget et al. \cite{1999}} \(a_{\text{cdom},\lambda}\) spectrum are typically of the form

\[
a_{\text{cdom},\lambda} = a_{\text{cdom},\lambda_0} \exp(-S \lambda - \lambda_0)\]

where \(\lambda_0 = 400\) nm, \(S\) is the exponential slope of spectral curves and it equals 0.013 \footnote{Wu et al. \cite{2002}}. Thus the absorbance coefficient of CDOM would be 0.014 08 m\(^{-1}\) in the Jiaozhou Bay. And accordingly the beam attenuation coefficient by particles could be derived\footnote{Stumpf and Pennoch \cite{1989}} see Table 1\footnote{Mikkeisen \cite{2002}}. Referring to Mikkeisen \cite{2002} the projected surface area can be calculated by Eq. 7\footnote{Mikkeisen \cite{2002}}

\[
A = \sum_{i=1}^{32} 1.5 \times \frac{c_{ij}}{x_i}\]

where \(x_i\) is the median of size bin \(i\) and \(c_{ij}\) is the concentration of size bin \(i\) both of which could be found from the LISST - 100 raw data sheet. There is a highly significantly linear correlation between the PSA and attenuation coefficient by particles\footnote{Mikkeisen \cite{2002}} with an square of correlation coefficient of 0.99\footnote{Mikkeisen \cite{2002}} see Fig. 5\footnote{Mikkeisen \cite{2002}}. As the PSA is derived from the forward scattering data of LISST - 100 the good fit between the PSA and the beam attenuation coefficient indicates that the beam attenuation is a factor dominated by scattering from inorganic particles\footnote{Mikkeisen \cite{2002}} not absorption from organic particles. And it should be noted that this linear relationship accords with the optical theory\footnote{Mikkeisen \cite{2002}} i.e. the beam attenuation is proportional to the cross-section area of particles\footnote{Van De Hulst \cite{1957}}.

Some other researchers have also developed similar relationships between optical properties and the PSA. Bale et al. \cite{1994} for example reported a power relationship between the particle cross-section and the remote sensing reflectance\footnote{Forget et al. \cite{1999}} \(\lambda\) of the form \(A = 25.437 \lambda^{-0.46} \ r^2 = 0.897\) where the wavelength was 804 nm. Their result coincides with the optical scattering theory and empirical estimation\footnote{Forget et al. \cite{1999}}. From the relationship between the attenuation coefficient by particles and the PSA a very similar relationship could be found between the attenuation coefficient by particles and the remote sensing reflectance. Furthermore\footnote{Forget et al. \cite{1999}} it can be inferred that the remote sensing reflectance does not correlate with the TSM at all\footnote{Forget et al. \cite{1999}} which is apparently an unexpected result. Mikkeisen \cite{2002} indicated that the PSA could vary by up to three orders of magnitude at a constant value of the TSM\footnote{Mikkeisen \cite{2002}} if the effective density and the particle size spectrum change\footnote{Mikkeisen \cite{2002}}. That is to say\footnote{Mikkeisen \cite{2002}} the PSA is dependent on the TSM\footnote{Mikkeisen \cite{2002}} the effective density and the particle sizes. And it would be necessary to better define the effective density and in-situ particle sizes for the correct determination of the TSM.

5 Summary

The deployment of LISST - 100 in the Jiaozhou Bay provided us with the in situ suspended particle size and optical transmission data for the first time. Although the data were a bit limited in either spatial or temporal scales\footnote{Forget et al. \cite{1999}} it was indicated that LISST - 100 would play a significant role in understanding the particle dynamics and optical oceanography. In summary\footnote{Forget et al. \cite{1999}} the following was reached in this study.

Both profiles exhibited similar particle size characteristics from surface to bottom waters. The particle diameters in surface waters were generally much coarser than those in the bottom areas. And the particulate components in the size range of 1 ~ 20 \(\mu\)m would be dominant for all the suspended matter. The volume concentration of suspended particles increases with water depth\footnote{Forget et al. \cite{1999}} with abrupt an increase near bottom waters. And the particles in the inner bay featured higher volume concentrations and coar-
ser grain sizes. The mean particle sizes for sediments and the suspended matter 10.8 m at Sta. J1 were almost the same as well as their size distributions. And an affinity between these two kinds of particles could be anticipated.

On the basis of the profiling data, the suspended particle effective density varies within 340 ~ 1 720 kg/m³ the settling velocity within 0.9 ~ 3.9 mm/s. The corresponding lower parameters could be found in the inner bay.

It was inferred that the optical scattering was mostly caused by 1 ~ 250 μm components among which the particles of being less than 20 μm dominated the beam attenuation. Besides the beam attenuation correlated with the PSA. And it was shown that the parameter of PSA could be used a proxy for the leaving reflectance estimation.

Acknowledgements

The authors are indebted to Dr. Meng Xianwei for his invaluable comments on the manuscript. Mr. Li Chaoxin helped to deal with measurement of the sediment particle sizes in laboratory. This work was part of the MASEG Key Laboratory of Marine Sedimentology and Environmental Geology of State Oceanic Administration First Institute Oceanography funded project — Suspended particle dynamics in coastal waters under contract No. MASEG2003003 and supported by the Qingdao Science and Technology Development Project under contract Nos 05 – 01 – hy – 83 and 05 – 2 – JC – 79.

References

Agrawal Y C Pottsmith H C. 2000. Instruments for particle size and settling and velocity observations in sediment transport. Marine Geology 168 1 ~ 4 89 ~ 114

Gartner J W Cheng R T Wang Peifang et al. 2001. Laboratory and field evaluations of the LISST – 100 instrument for suspended particle size determinations. Marine Geology 175 199 ~ 219

study on suspended sediment concentration measurements using an ADCP mounted on a moving vessel. Oceanologia et Limnologia Sinica (in Chinese), 30(6): 758 ~ 763